summaryrefslogtreecommitdiffstats
path: root/mm/slab.h
blob: 58c6c1c2a78ee39f08ace4d4fe6493e4e0911781 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
 * Internal slab definitions
 */

#ifdef CONFIG_SLOB
/*
 * Common fields provided in kmem_cache by all slab allocators
 * This struct is either used directly by the allocator (SLOB)
 * or the allocator must include definitions for all fields
 * provided in kmem_cache_common in their definition of kmem_cache.
 *
 * Once we can do anonymous structs (C11 standard) we could put a
 * anonymous struct definition in these allocators so that the
 * separate allocations in the kmem_cache structure of SLAB and
 * SLUB is no longer needed.
 */
struct kmem_cache {
	unsigned int object_size;/* The original size of the object */
	unsigned int size;	/* The aligned/padded/added on size  */
	unsigned int align;	/* Alignment as calculated */
	slab_flags_t flags;	/* Active flags on the slab */
	unsigned int useroffset;/* Usercopy region offset */
	unsigned int usersize;	/* Usercopy region size */
	const char *name;	/* Slab name for sysfs */
	int refcount;		/* Use counter */
	void (*ctor)(void *);	/* Called on object slot creation */
	struct list_head list;	/* List of all slab caches on the system */
};

#endif /* CONFIG_SLOB */

#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif

#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif

#include <linux/memcontrol.h>
#include <linux/fault-inject.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/random.h>
#include <linux/sched/mm.h>

/*
 * State of the slab allocator.
 *
 * This is used to describe the states of the allocator during bootup.
 * Allocators use this to gradually bootstrap themselves. Most allocators
 * have the problem that the structures used for managing slab caches are
 * allocated from slab caches themselves.
 */
enum slab_state {
	DOWN,			/* No slab functionality yet */
	PARTIAL,		/* SLUB: kmem_cache_node available */
	PARTIAL_NODE,		/* SLAB: kmalloc size for node struct available */
	UP,			/* Slab caches usable but not all extras yet */
	FULL			/* Everything is working */
};

extern enum slab_state slab_state;

/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;

/* The list of all slab caches on the system */
extern struct list_head slab_caches;

/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;

/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
	const char *name;
	unsigned int size;
} kmalloc_info[];

#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
void setup_kmalloc_cache_index_table(void);
void create_kmalloc_caches(slab_flags_t);

/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
#endif


/* Functions provided by the slab allocators */
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);

struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
			slab_flags_t flags, unsigned int useroffset,
			unsigned int usersize);
extern void create_boot_cache(struct kmem_cache *, const char *name,
			unsigned int size, slab_flags_t flags,
			unsigned int useroffset, unsigned int usersize);

int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
		slab_flags_t flags, const char *name, void (*ctor)(void *));
#ifndef CONFIG_SLOB
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
		   slab_flags_t flags, void (*ctor)(void *));

slab_flags_t kmem_cache_flags(unsigned int object_size,
	slab_flags_t flags, const char *name,
	void (*ctor)(void *));
#else
static inline struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
		   slab_flags_t flags, void (*ctor)(void *))
{ return NULL; }

static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
	slab_flags_t flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}
#endif


/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
			 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )

#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
			  SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif

#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
			  SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
			  SLAB_ACCOUNT)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
			  SLAB_TEMPORARY | SLAB_ACCOUNT)
#else
#define SLAB_CACHE_FLAGS (0)
#endif

/* Common flags available with current configuration */
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)

/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
			      SLAB_RED_ZONE | \
			      SLAB_POISON | \
			      SLAB_STORE_USER | \
			      SLAB_TRACE | \
			      SLAB_CONSISTENCY_CHECKS | \
			      SLAB_MEM_SPREAD | \
			      SLAB_NOLEAKTRACE | \
			      SLAB_RECLAIM_ACCOUNT | \
			      SLAB_TEMPORARY | \
			      SLAB_ACCOUNT)

bool __kmem_cache_empty(struct kmem_cache *);
int __kmem_cache_shutdown(struct kmem_cache *);
void __kmem_cache_release(struct kmem_cache *);
int __kmem_cache_shrink(struct kmem_cache *);
void __kmemcg_cache_deactivate(struct kmem_cache *s);
void slab_kmem_cache_release(struct kmem_cache *);

struct seq_file;
struct file;

struct slabinfo {
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs;
	unsigned long num_slabs;
	unsigned long shared_avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int shared;
	unsigned int objects_per_slab;
	unsigned int cache_order;
};

void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos);

/*
 * Generic implementation of bulk operations
 * These are useful for situations in which the allocator cannot
 * perform optimizations. In that case segments of the object listed
 * may be allocated or freed using these operations.
 */
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);

#ifdef CONFIG_MEMCG_KMEM

/* List of all root caches. */
extern struct list_head		slab_root_caches;
#define root_caches_node	memcg_params.__root_caches_node

/*
 * Iterate over all memcg caches of the given root cache. The caller must hold
 * slab_mutex.
 */
#define for_each_memcg_cache(iter, root) \
	list_for_each_entry(iter, &(root)->memcg_params.children, \
			    memcg_params.children_node)

static inline bool is_root_cache(struct kmem_cache *s)
{
	return !s->memcg_params.root_cache;
}

static inline bool slab_equal_or_root(struct kmem_cache *s,
				      struct kmem_cache *p)
{
	return p == s || p == s->memcg_params.root_cache;
}

/*
 * We use suffixes to the name in memcg because we can't have caches
 * created in the system with the same name. But when we print them
 * locally, better refer to them with the base name
 */
static inline const char *cache_name(struct kmem_cache *s)
{
	if (!is_root_cache(s))
		s = s->memcg_params.root_cache;
	return s->name;
}

/*
 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
 * That said the caller must assure the memcg's cache won't go away by either
 * taking a css reference to the owner cgroup, or holding the slab_mutex.
 */
static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
	struct kmem_cache *cachep;
	struct memcg_cache_array *arr;

	rcu_read_lock();
	arr = rcu_dereference(s->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match this (see
	 * memcg_create_kmem_cache()).
	 */
	cachep = READ_ONCE(arr->entries[idx]);
	rcu_read_unlock();

	return cachep;
}

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	if (is_root_cache(s))
		return s;
	return s->memcg_params.root_cache;
}

static __always_inline int memcg_charge_slab(struct page *page,
					     gfp_t gfp, int order,
					     struct kmem_cache *s)
{
	if (!memcg_kmem_enabled())
		return 0;
	if (is_root_cache(s))
		return 0;
	return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
}

static __always_inline void memcg_uncharge_slab(struct page *page, int order,
						struct kmem_cache *s)
{
	if (!memcg_kmem_enabled())
		return;
	memcg_kmem_uncharge(page, order);
}

extern void slab_init_memcg_params(struct kmem_cache *);
extern void memcg_link_cache(struct kmem_cache *s);
extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
				void (*deact_fn)(struct kmem_cache *));

#else /* CONFIG_MEMCG_KMEM */

/* If !memcg, all caches are root. */
#define slab_root_caches	slab_caches
#define root_caches_node	list

#define for_each_memcg_cache(iter, root) \
	for ((void)(iter), (void)(root); 0; )

static inline bool is_root_cache(struct kmem_cache *s)
{
	return true;
}

static inline bool slab_equal_or_root(struct kmem_cache *s,
				      struct kmem_cache *p)
{
	return true;
}

static inline const char *cache_name(struct kmem_cache *s)
{
	return s->name;
}

static inline struct kmem_cache *
cache_from_memcg_idx(struct kmem_cache *s, int idx)
{
	return NULL;
}

static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
	return s;
}

static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
				    struct kmem_cache *s)
{
	return 0;
}

static inline void memcg_uncharge_slab(struct page *page, int order,
				       struct kmem_cache *s)
{
}

static inline void slab_init_memcg_params(struct kmem_cache *s)
{
}

static inline void memcg_link_cache(struct kmem_cache *s)
{
}

#endif /* CONFIG_MEMCG_KMEM */

static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
	struct kmem_cache *cachep;
	struct page *page;

	/*
	 * When kmemcg is not being used, both assignments should return the
	 * same value. but we don't want to pay the assignment price in that
	 * case. If it is not compiled in, the compiler should be smart enough
	 * to not do even the assignment. In that case, slab_equal_or_root
	 * will also be a constant.
	 */
	if (!memcg_kmem_enabled() &&
	    !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
		return s;

	page = virt_to_head_page(x);
	cachep = page->slab_cache;
	if (slab_equal_or_root(cachep, s))
		return cachep;

	pr_err("%s: Wrong slab cache. %s but object is from %s\n",
	       __func__, s->name, cachep->name);
	WARN_ON_ONCE(1);
	return s;
}

static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
	return s->object_size;

#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->object_size;
# endif
	if (s->flags & SLAB_KASAN)
		return s->object_size;
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
#endif
}

static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
{
	flags &= gfp_allowed_mask;

	fs_reclaim_acquire(flags);
	fs_reclaim_release(flags);

	might_sleep_if(gfpflags_allow_blocking(flags));

	if (should_failslab(s, flags))
		return NULL;

	if (memcg_kmem_enabled() &&
	    ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
		return memcg_kmem_get_cache(s);

	return s;
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
					size_t size, void **p)
{
	size_t i;

	flags &= gfp_allowed_mask;
	for (i = 0; i < size; i++) {
		void *object = p[i];

		kmemleak_alloc_recursive(object, s->object_size, 1,
					 s->flags, flags);
		kasan_slab_alloc(s, object, flags);
	}

	if (memcg_kmem_enabled())
		memcg_kmem_put_cache(s);
}

#ifndef CONFIG_SLOB
/*
 * The slab lists for all objects.
 */
struct kmem_cache_node {
	spinlock_t list_lock;

#ifdef CONFIG_SLAB
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long total_slabs;	/* length of all slab lists */
	unsigned long free_slabs;	/* length of free slab list only */
	unsigned long free_objects;
	unsigned int free_limit;
	unsigned int colour_next;	/* Per-node cache coloring */
	struct array_cache *shared;	/* shared per node */
	struct alien_cache **alien;	/* on other nodes */
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
#endif

#ifdef CONFIG_SLUB
	unsigned long nr_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
	atomic_long_t total_objects;
	struct list_head full;
#endif
#endif

};

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

/*
 * Iterator over all nodes. The body will be executed for each node that has
 * a kmem_cache_node structure allocated (which is true for all online nodes)
 */
#define for_each_kmem_cache_node(__s, __node, __n) \
	for (__node = 0; __node < nr_node_ids; __node++) \
		 if ((__n = get_node(__s, __node)))

#endif

void *slab_start(struct seq_file *m, loff_t *pos);
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
void *memcg_slab_start(struct seq_file *m, loff_t *pos);
void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
void memcg_slab_stop(struct seq_file *m, void *p);
int memcg_slab_show(struct seq_file *m, void *p);

#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif

void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);

#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
			gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
					unsigned int count, gfp_t gfp)
{
	return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

#endif /* MM_SLAB_H */
s="hl com"> signature, then the driver may fail to function after the board is detected. Please note that the drive ordering that Future Domain implemented in BIOS versions 3.4 and 3.5 is the opposite of the order (currently) used by the rest of the SCSI industry. If you have BIOS version 3.4 or 3.5, and have more than one drive, then the drive ordering will be the reverse of that which you see under DOS. For example, under DOS SCSI ID 0 will be D: and SCSI ID 1 will be C: (the boot device). Under Linux, SCSI ID 0 will be /dev/sda and SCSI ID 1 will be /dev/sdb. The Linux ordering is consistent with that provided by all the other SCSI drivers for Linux. If you want this changed, you will probably have to patch the higher level SCSI code. If you do so, please send me patches that are protected by #ifdefs. If you have a TMC-8xx or TMC-9xx board, then this is not the driver for your board. Please refer to the Seagate driver for more information and possible support. HISTORY: Linux Driver Driver Version Version Date Support/Notes 0.0 3 May 1992 V2.0 BIOS; 1800 chip 0.97 1.9 28 Jul 1992 0.98.6 3.1 27 Nov 1992 0.99 3.2 9 Dec 1992 0.99.3 3.3 10 Jan 1993 V3.0 BIOS 0.99.5 3.5 18 Feb 1993 0.99.10 3.6 15 May 1993 V3.2 BIOS; 18C50 chip 0.99.11 3.17 3 Jul 1993 (now under RCS) 0.99.12 3.18 13 Aug 1993 0.99.14 5.6 31 Oct 1993 (reselection code removed) 0.99.15 5.9 23 Jan 1994 V3.4 BIOS (preliminary) 1.0.8/1.1.1 5.15 1 Apr 1994 V3.4 BIOS; 18C30 chip (preliminary) 1.0.9/1.1.3 5.16 7 Apr 1994 V3.4 BIOS; 18C30 chip 1.1.38 5.18 30 Jul 1994 36C70 chip (PCI version of 18C30) 1.1.62 5.20 2 Nov 1994 V3.5 BIOS 1.1.73 5.22 7 Dec 1994 Quantum ISA-200S board; V2.0 BIOS 1.1.82 5.26 14 Jan 1995 V3.5 BIOS; TMC-1610M/MER/MEX board 1.2.10 5.28 5 Jun 1995 Quantum ISA-250MG board; V2.0, V2.01 BIOS 1.3.4 5.31 23 Jun 1995 PCI BIOS-32 detection (preliminary) 1.3.7 5.33 4 Jul 1995 PCI BIOS-32 detection 1.3.28 5.36 17 Sep 1995 V3.61 BIOS; LILO command-line support 1.3.34 5.39 12 Oct 1995 V3.60 BIOS; /proc 1.3.72 5.39 8 Feb 1996 Adaptec AHA-2920 board 1.3.85 5.41 4 Apr 1996 2.0.12 5.44 8 Aug 1996 Use ID 7 for all PCI cards 2.1.1 5.45 2 Oct 1996 Update ROM accesses for 2.1.x 2.1.97 5.46 23 Apr 1998 Rewritten PCI detection routines [mj] 2.1.11x 5.47 9 Aug 1998 Touched for 8 SCSI disk majors support 5.48 18 Nov 1998 BIOS no longer needed for PCI detection 2.2.0 5.50 28 Dec 1998 Support insmod parameters REFERENCES USED: "TMC-1800 SCSI Chip Specification (FDC-1800T)", Future Domain Corporation, 1990. "Technical Reference Manual: 18C50 SCSI Host Adapter Chip", Future Domain Corporation, January 1992. "LXT SCSI Products: Specifications and OEM Technical Manual (Revision B/September 1991)", Maxtor Corporation, 1991. "7213S product Manual (Revision P3)", Maxtor Corporation, 1992. "Draft Proposed American National Standard: Small Computer System Interface - 2 (SCSI-2)", Global Engineering Documents. (X3T9.2/86-109, revision 10h, October 17, 1991) Private communications, Drew Eckhardt (drew@cs.colorado.edu) and Eric Youngdale (ericy@cais.com), 1992. Private communication, Tuong Le (Future Domain Engineering department), 1994. (Disk geometry computations for Future Domain BIOS version 3.4, and TMC-18C30 detection.) Hogan, Thom. The Programmer's PC Sourcebook. Microsoft Press, 1988. Page 60 (2.39: Disk Partition Table Layout). "18C30 Technical Reference Manual", Future Domain Corporation, 1993, page 6-1. NOTES ON REFERENCES: The Maxtor manuals were free. Maxtor telephone technical support is great! The Future Domain manuals were $25 and $35. They document the chip, not the TMC-16x0 boards, so some information I had to guess at. In 1992, Future Domain sold DOS BIOS source for $250 and the UN*X driver source was $750, but these required a non-disclosure agreement, so even if I could have afforded them, they would *not* have been useful for writing this publically distributable driver. Future Domain technical support has provided some information on the phone and have sent a few useful FAXs. They have been much more helpful since they started to recognize that the word "Linux" refers to an operating system :-). ALPHA TESTERS: There are many other alpha testers that come and go as the driver develops. The people listed here were most helpful in times of greatest need (mostly early on -- I've probably left out a few worthy people in more recent times): Todd Carrico (todd@wutc.wustl.edu), Dan Poirier (poirier@cs.unc.edu ), Ken Corey (kenc@sol.acs.unt.edu), C. de Bruin (bruin@bruin@sterbbs.nl), Sakari Aaltonen (sakaria@vipunen.hit.fi), John Rice (rice@xanth.cs.odu.edu), Brad Yearwood (brad@optilink.com), and Ray Toy (toy@soho.crd.ge.com). Special thanks to Tien-Wan Yang (twyang@cs.uh.edu), who graciously lent me his 18C50-based card for debugging. He is the sole reason that this driver works with the 18C50 chip. Thanks to Dave Newman (dnewman@crl.com) for providing initial patches for the version 3.4 BIOS. Thanks to James T. McKinley (mckinley@msupa.pa.msu.edu) for providing patches that support the TMC-3260, a PCI bus card with the 36C70 chip. The 36C70 chip appears to be "completely compatible" with the 18C30 chip. Thanks to Eric Kasten (tigger@petroglyph.cl.msu.edu) for providing the patch for the version 3.5 BIOS. Thanks for Stephen Henson (shenson@nyx10.cs.du.edu) for providing the patch for the Quantum ISA-200S SCSI adapter. Thanks to Adam Bowen for the signature to the 1610M/MER/MEX scsi cards, to Martin Andrews (andrewm@ccfadm.eeg.ccf.org) for the signature to some random TMC-1680 repackaged by IBM; and to Mintak Ng (mintak@panix.com) for the version 3.61 BIOS signature. Thanks for Mark Singer (elf@netcom.com) and Richard Simpson (rsimpson@ewrcsdra.demon.co.uk) for more Quantum signatures and detective work on the Quantum RAM layout. Special thanks to James T. McKinley (mckinley@msupa.pa.msu.edu) for providing patches for proper PCI BIOS32-mediated detection of the TMC-3260 card (a PCI bus card with the 36C70 chip). Please send James PCI-related bug reports. Thanks to Tom Cavin (tec@usa1.com) for preliminary command-line option patches. New PCI detection code written by Martin Mares <mj@atrey.karlin.mff.cuni.cz> Insmod parameter code based on patches from Daniel Graham <graham@balance.uoregon.edu>. All of the alpha testers deserve much thanks. NOTES ON USER DEFINABLE OPTIONS: DEBUG: This turns on the printing of various debug information. ENABLE_PARITY: This turns on SCSI parity checking. With the current driver, all attached devices must support SCSI parity. If none of your devices support parity, then you can probably get the driver to work by turning this option off. I have no way of testing this, however, and it would appear that no one ever uses this option. FIFO_COUNT: The host adapter has an 8K cache (host adapters based on the 18C30 chip have a 2k cache). When this many 512 byte blocks are filled by the SCSI device, an interrupt will be raised. Therefore, this could be as low as 0, or as high as 16. Note, however, that values which are too high or too low seem to prevent any interrupts from occurring, and thereby lock up the machine. I have found that 2 is a good number, but throughput may be increased by changing this value to values which are close to 2. Please let me know if you try any different values. RESELECTION: This is no longer an option, since I gave up trying to implement it in version 4.x of this driver. It did not improve performance at all and made the driver unstable (because I never found one of the two race conditions which were introduced by the multiple outstanding command code). The instability seems a very high price to pay just so that you don't have to wait for the tape to rewind. If you want this feature implemented, send me patches. I'll be happy to send a copy of my (broken) driver to anyone who would like to see a copy. **************************************************************************/ #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/blkdev.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/proc_fs.h> #include <linux/pci.h> #include <linux/stat.h> #include <linux/delay.h> #include <linux/io.h> #include <scsi/scsicam.h> #include <asm/system.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <scsi/scsi_ioctl.h> #include "fdomain.h" MODULE_AUTHOR("Rickard E. Faith"); MODULE_DESCRIPTION("Future domain SCSI driver"); MODULE_LICENSE("GPL"); #define VERSION "$Revision: 5.51 $" /* START OF USER DEFINABLE OPTIONS */ #define DEBUG 0 /* Enable debugging output */ #define ENABLE_PARITY 1 /* Enable SCSI Parity */ #define FIFO_COUNT 2 /* Number of 512 byte blocks before INTR */ /* END OF USER DEFINABLE OPTIONS */ #if DEBUG #define EVERY_ACCESS 0 /* Write a line on every scsi access */ #define ERRORS_ONLY 1 /* Only write a line if there is an error */ #define DEBUG_DETECT 0 /* Debug fdomain_16x0_detect() */ #define DEBUG_MESSAGES 1 /* Debug MESSAGE IN phase */ #define DEBUG_ABORT 1 /* Debug abort() routine */ #define DEBUG_RESET 1 /* Debug reset() routine */ #define DEBUG_RACE 1 /* Debug interrupt-driven race condition */ #else #define EVERY_ACCESS 0 /* LEAVE THESE ALONE--CHANGE THE ONES ABOVE */ #define ERRORS_ONLY 0 #define DEBUG_DETECT 0 #define DEBUG_MESSAGES 0 #define DEBUG_ABORT 0 #define DEBUG_RESET 0 #define DEBUG_RACE 0 #endif /* Errors are reported on the line, so we don't need to report them again */ #if EVERY_ACCESS #undef ERRORS_ONLY #define ERRORS_ONLY 0 #endif #if ENABLE_PARITY #define PARITY_MASK 0x08 #else #define PARITY_MASK 0x00 #endif enum chip_type { unknown = 0x00, tmc1800 = 0x01, tmc18c50 = 0x02, tmc18c30 = 0x03, }; enum { in_arbitration = 0x02, in_selection = 0x04, in_other = 0x08, disconnect = 0x10, aborted = 0x20, sent_ident = 0x40, }; enum in_port_type { Read_SCSI_Data = 0, SCSI_Status = 1, TMC_Status = 2, FIFO_Status = 3, /* tmc18c50/tmc18c30 only */ Interrupt_Cond = 4, /* tmc18c50/tmc18c30 only */ LSB_ID_Code = 5, MSB_ID_Code = 6, Read_Loopback = 7, SCSI_Data_NoACK = 8, Interrupt_Status = 9, Configuration1 = 10, Configuration2 = 11, /* tmc18c50/tmc18c30 only */ Read_FIFO = 12, FIFO_Data_Count = 14 }; enum out_port_type { Write_SCSI_Data = 0, SCSI_Cntl = 1, Interrupt_Cntl = 2, SCSI_Mode_Cntl = 3, TMC_Cntl = 4, Memory_Cntl = 5, /* tmc18c50/tmc18c30 only */ Write_Loopback = 7, IO_Control = 11, /* tmc18c30 only */ Write_FIFO = 12 }; /* .bss will zero all the static variables below */ static int port_base; static unsigned long bios_base; static void __iomem * bios_mem; static int bios_major; static int bios_minor; static int PCI_bus; #ifdef CONFIG_PCI static struct pci_dev *PCI_dev; #endif static int Quantum; /* Quantum board variant */ static int interrupt_level; static volatile int in_command; static struct scsi_cmnd *current_SC; static enum chip_type chip = unknown; static int adapter_mask; static int this_id; static int setup_called; #if DEBUG_RACE static volatile int in_interrupt_flag; #endif static int FIFO_Size = 0x2000; /* 8k FIFO for pre-tmc18c30 chips */ static irqreturn_t do_fdomain_16x0_intr( int irq, void *dev_id ); /* Allow insmod parameters to be like LILO parameters. For example: insmod fdomain fdomain=0x140,11 */ static char * fdomain = NULL; module_param(fdomain, charp, 0); #ifndef PCMCIA static unsigned long addresses[] = { 0xc8000, 0xca000, 0xce000, 0xde000, 0xcc000, /* Extra addresses for PCI boards */ 0xd0000, 0xe0000, }; #define ADDRESS_COUNT ARRAY_SIZE(addresses) static unsigned short ports[] = { 0x140, 0x150, 0x160, 0x170 }; #define PORT_COUNT ARRAY_SIZE(ports) static unsigned short ints[] = { 3, 5, 10, 11, 12, 14, 15, 0 }; #endif /* !PCMCIA */ /* READ THIS BEFORE YOU ADD A SIGNATURE! READING THIS SHORT NOTE CAN SAVE YOU LOTS OF TIME! READ EVERY WORD, ESPECIALLY THE WORD *NOT* This driver works *ONLY* for Future Domain cards using the TMC-1800, TMC-18C50, or TMC-18C30 chip. This includes models TMC-1650, 1660, 1670, and 1680. These are all 16-bit cards. The following BIOS signature signatures are for boards which do *NOT* work with this driver (these TMC-8xx and TMC-9xx boards may work with the Seagate driver): FUTURE DOMAIN CORP. (C) 1986-1988 V4.0I 03/16/88 FUTURE DOMAIN CORP. (C) 1986-1989 V5.0C2/14/89 FUTURE DOMAIN CORP. (C) 1986-1989 V6.0A7/28/89 FUTURE DOMAIN CORP. (C) 1986-1990 V6.0105/31/90 FUTURE DOMAIN CORP. (C) 1986-1990 V6.0209/18/90 FUTURE DOMAIN CORP. (C) 1986-1990 V7.009/18/90 FUTURE DOMAIN CORP. (C) 1992 V8.00.004/02/92 (The cards which do *NOT* work are all 8-bit cards -- although some of them have a 16-bit form-factor, the upper 8-bits are used only for IRQs and are *NOT* used for data. You can tell the difference by following the tracings on the circuit board -- if only the IRQ lines are involved, you have a "8-bit" card, and should *NOT* use this driver.) */ #ifndef PCMCIA static struct signature { const char *signature; int sig_offset; int sig_length; int major_bios_version; int minor_bios_version; int flag; /* 1 == PCI_bus, 2 == ISA_200S, 3 == ISA_250MG, 4 == ISA_200S */ } signatures[] = { /* 1 2 3 4 5 6 */ /* 123456789012345678901234567890123456789012345678901234567890 */ { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 5, 50, 2, 0, 0 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V1.07/28/89", 5, 50, 2, 0, 0 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 72, 50, 2, 0, 2 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.0", 73, 43, 2, 0, 3 }, { "FUTURE DOMAIN CORP. (C) 1991 1800-V2.0.", 72, 39, 2, 0, 4 }, { "FUTURE DOMAIN CORP. (C) 1992 V3.00.004/02/92", 5, 44, 3, 0, 0 }, { "FUTURE DOMAIN TMC-18XX (C) 1993 V3.203/12/93", 5, 44, 3, 2, 0 }, { "IBM F1 P2 BIOS v1.0104/29/93", 5, 28, 3, -1, 0 }, { "Future Domain Corp. V1.0008/18/93", 5, 33, 3, 4, 0 }, { "Future Domain Corp. V1.0008/18/93", 26, 33, 3, 4, 1 }, { "Adaptec AHA-2920 PCI-SCSI Card", 42, 31, 3, -1, 1 }, { "IBM F1 P264/32", 5, 14, 3, -1, 1 }, /* This next signature may not be a 3.5 bios */ { "Future Domain Corp. V2.0108/18/93", 5, 33, 3, 5, 0 }, { "FUTURE DOMAIN CORP. V3.5008/18/93", 5, 34, 3, 5, 0 }, { "FUTURE DOMAIN 18c30/18c50/1800 (C) 1994 V3.5", 5, 44, 3, 5, 0 }, { "FUTURE DOMAIN CORP. V3.6008/18/93", 5, 34, 3, 6, 0 }, { "FUTURE DOMAIN CORP. V3.6108/18/93", 5, 34, 3, 6, 0 }, { "FUTURE DOMAIN TMC-18XX", 5, 22, -1, -1, 0 }, /* READ NOTICE ABOVE *BEFORE* YOU WASTE YOUR TIME ADDING A SIGNATURE Also, fix the disk geometry code for your signature and send your changes for faith@cs.unc.edu. Above all, do *NOT* change any old signatures! Note that the last line will match a "generic" 18XX bios. Because Future Domain has changed the host SCSI ID and/or the location of the geometry information in the on-board RAM area for each of the first three BIOS's, it is still important to enter a fully qualified signature in the table for any new BIOS's (after the host SCSI ID and geometry location are verified). */ }; #define SIGNATURE_COUNT ARRAY_SIZE(signatures) #endif /* !PCMCIA */ static void print_banner( struct Scsi_Host *shpnt ) { if (!shpnt) return; /* This won't ever happen */ if (bios_major < 0 && bios_minor < 0) { printk(KERN_INFO "scsi%d: <fdomain> No BIOS; using scsi id %d\n", shpnt->host_no, shpnt->this_id); } else { printk(KERN_INFO "scsi%d: <fdomain> BIOS version ", shpnt->host_no); if (bios_major >= 0) printk("%d.", bios_major); else printk("?."); if (bios_minor >= 0) printk("%d", bios_minor); else printk("?."); printk( " at 0x%lx using scsi id %d\n", bios_base, shpnt->this_id ); } /* If this driver works for later FD PCI boards, we will have to modify banner for additional PCI cards, but for now if it's PCI it's a TMC-3260 - JTM */ printk(KERN_INFO "scsi%d: <fdomain> %s chip at 0x%x irq ", shpnt->host_no, chip == tmc1800 ? "TMC-1800" : (chip == tmc18c50 ? "TMC-18C50" : (chip == tmc18c30 ? (PCI_bus ? "TMC-36C70 (PCI bus)" : "TMC-18C30") : "Unknown")), port_base); if (interrupt_level) printk("%d", interrupt_level); else printk("<none>"); printk( "\n" ); } int fdomain_setup(char *str) { int ints[4]; (void)get_options(str, ARRAY_SIZE(ints), ints); if (setup_called++ || ints[0] < 2 || ints[0] > 3) { printk(KERN_INFO "scsi: <fdomain> Usage: fdomain=<PORT_BASE>,<IRQ>[,<ADAPTER_ID>]\n"); printk(KERN_ERR "scsi: <fdomain> Bad LILO/INSMOD parameters?\n"); return 0; } port_base = ints[0] >= 1 ? ints[1] : 0; interrupt_level = ints[0] >= 2 ? ints[2] : 0; this_id = ints[0] >= 3 ? ints[3] : 0; bios_major = bios_minor = -1; /* Use geometry for BIOS version >= 3.4 */ ++setup_called; return 1; } __setup("fdomain=", fdomain_setup); static void do_pause(unsigned amount) /* Pause for amount*10 milliseconds */ { mdelay(10*amount); } static inline void fdomain_make_bus_idle( void ) { outb(0, port_base + SCSI_Cntl); outb(0, port_base + SCSI_Mode_Cntl); if (chip == tmc18c50 || chip == tmc18c30) outb(0x21 | PARITY_MASK, port_base + TMC_Cntl); /* Clear forced intr. */ else outb(0x01 | PARITY_MASK, port_base + TMC_Cntl); } static int fdomain_is_valid_port( int port ) { #if DEBUG_DETECT printk( " (%x%x),", inb( port + MSB_ID_Code ), inb( port + LSB_ID_Code ) ); #endif /* The MCA ID is a unique id for each MCA compatible board. We are using ISA boards, but Future Domain provides the MCA ID anyway. We can use this ID to ensure that this is a Future Domain TMC-1660/TMC-1680. */ if (inb( port + LSB_ID_Code ) != 0xe9) { /* test for 0x6127 id */ if (inb( port + LSB_ID_Code ) != 0x27) return 0; if (inb( port + MSB_ID_Code ) != 0x61) return 0; chip = tmc1800; } else { /* test for 0xe960 id */ if (inb( port + MSB_ID_Code ) != 0x60) return 0; chip = tmc18c50; /* Try to toggle 32-bit mode. This only works on an 18c30 chip. (User reports say this works, so we should switch to it in the near future.) */ outb( 0x80, port + IO_Control ); if ((inb( port + Configuration2 ) & 0x80) == 0x80) { outb( 0x00, port + IO_Control ); if ((inb( port + Configuration2 ) & 0x80) == 0x00) { chip = tmc18c30; FIFO_Size = 0x800; /* 2k FIFO */ } } /* If that failed, we are an 18c50. */ } return 1; } static int fdomain_test_loopback( void ) { int i; int result; for (i = 0; i < 255; i++) { outb( i, port_base + Write_Loopback ); result = inb( port_base + Read_Loopback ); if (i != result) return 1; } return 0; } #ifndef PCMCIA /* fdomain_get_irq assumes that we have a valid MCA ID for a TMC-1660/TMC-1680 Future Domain board. Now, check to be sure the bios_base matches these ports. If someone was unlucky enough to have purchased more than one Future Domain board, then they will have to modify this code, as we only detect one board here. [The one with the lowest bios_base.] Note that this routine is only used for systems without a PCI BIOS32 (e.g., ISA bus). For PCI bus systems, this routine will likely fail unless one of the IRQs listed in the ints array is used by the board. Sometimes it is possible to use the computer's BIOS setup screen to configure a PCI system so that one of these IRQs will be used by the Future Domain card. */ static int fdomain_get_irq( int base ) { int options = inb(base + Configuration1); #if DEBUG_DETECT printk("scsi: <fdomain> Options = %x\n", options); #endif /* Check for board with lowest bios_base -- this isn't valid for the 18c30 or for boards on the PCI bus, so just assume we have the right board. */ if (chip != tmc18c30 && !PCI_bus && addresses[(options & 0xc0) >> 6 ] != bios_base) return 0; return ints[(options & 0x0e) >> 1]; } static int fdomain_isa_detect( int *irq, int *iobase ) { int i, j; int base = 0xdeadbeef; int flag = 0; #if DEBUG_DETECT printk( "scsi: <fdomain> fdomain_isa_detect:" ); #endif for (i = 0; i < ADDRESS_COUNT; i++) { void __iomem *p = ioremap(addresses[i], 0x2000); if (!p) continue; #if DEBUG_DETECT printk( " %lx(%lx),", addresses[i], bios_base ); #endif for (j = 0; j < SIGNATURE_COUNT; j++) { if (check_signature(p + signatures[j].sig_offset, signatures[j].signature, signatures[j].sig_length )) { bios_major = signatures[j].major_bios_version; bios_minor = signatures[j].minor_bios_version; PCI_bus = (signatures[j].flag == 1); Quantum = (signatures[j].flag > 1) ? signatures[j].flag : 0; bios_base = addresses[i]; bios_mem = p; goto found; } } iounmap(p); } found: if (bios_major == 2) { /* The TMC-1660/TMC-1680 has a RAM area just after the BIOS ROM. Assuming the ROM is enabled (otherwise we wouldn't have been able to read the ROM signature :-), then the ROM sets up the RAM area with some magic numbers, such as a list of port base addresses and a list of the disk "geometry" reported to DOS (this geometry has nothing to do with physical geometry). */ switch (Quantum) { case 2: /* ISA_200S */ case 3: /* ISA_250MG */ base = readb(bios_mem + 0x1fa2) + (readb(bios_mem + 0x1fa3) << 8); break; case 4: /* ISA_200S (another one) */ base = readb(bios_mem + 0x1fa3) + (readb(bios_mem + 0x1fa4) << 8); break; default: base = readb(bios_mem + 0x1fcc) + (readb(bios_mem + 0x1fcd) << 8); break; } #if DEBUG_DETECT printk( " %x,", base ); #endif for (i = 0; i < PORT_COUNT; i++) { if (base == ports[i]) { if (!request_region(base, 0x10, "fdomain")) break; if (!fdomain_is_valid_port(base)) { release_region(base, 0x10); break; } *irq = fdomain_get_irq( base ); *iobase = base; return 1; } } /* This is a bad sign. It usually means that someone patched the BIOS signature list (the signatures variable) to contain a BIOS signature for a board *OTHER THAN* the TMC-1660/TMC-1680. */ #if DEBUG_DETECT printk( " RAM FAILED, " ); #endif } /* Anyway, the alternative to finding the address in the RAM is to just search through every possible port address for one that is attached to the Future Domain card. Don't panic, though, about reading all these random port addresses -- there are rumors that the Future Domain BIOS does something very similar. Do not, however, check ports which the kernel knows are being used by another driver. */ for (i = 0; i < PORT_COUNT; i++) { base = ports[i]; if (!request_region(base, 0x10, "fdomain")) { #if DEBUG_DETECT printk( " (%x inuse),", base ); #endif continue; } #if DEBUG_DETECT printk( " %x,", base ); #endif flag = fdomain_is_valid_port(base); if (flag) break; release_region(base, 0x10); } #if DEBUG_DETECT if (flag) printk( " SUCCESS\n" ); else printk( " FAILURE\n" ); #endif if (!flag) return 0; /* iobase not found */ *irq = fdomain_get_irq( base ); *iobase = base; return 1; /* success */ } #else /* PCMCIA */ static int fdomain_isa_detect( int *irq, int *iobase ) { if (irq) *irq = 0; if (iobase) *iobase = 0; return 0; } #endif /* !PCMCIA */ /* PCI detection function: int fdomain_pci_bios_detect(int* irq, int* iobase) This function gets the Interrupt Level and I/O base address from the PCI configuration registers. */ #ifdef CONFIG_PCI static int fdomain_pci_bios_detect( int *irq, int *iobase, struct pci_dev **ret_pdev ) { unsigned int pci_irq; /* PCI interrupt line */ unsigned long pci_base; /* PCI I/O base address */ struct pci_dev *pdev = NULL; #if DEBUG_DETECT /* Tell how to print a list of the known PCI devices from bios32 and list vendor and device IDs being used if in debug mode. */ printk( "scsi: <fdomain> INFO: use lspci -v to see list of PCI devices\n" ); printk( "scsi: <fdomain> TMC-3260 detect:" " Using Vendor ID: 0x%x and Device ID: 0x%x\n", PCI_VENDOR_ID_FD, PCI_DEVICE_ID_FD_36C70 ); #endif if ((pdev = pci_get_device(PCI_VENDOR_ID_FD, PCI_DEVICE_ID_FD_36C70, pdev)) == NULL) return 0; if (pci_enable_device(pdev)) goto fail; #if DEBUG_DETECT printk( "scsi: <fdomain> TMC-3260 detect:" " PCI bus %u, device %u, function %u\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); #endif /* We now have the appropriate device function for the FD board so we just read the PCI config info from the registers. */ pci_base = pci_resource_start(pdev, 0); pci_irq = pdev->irq; if (!request_region( pci_base, 0x10, "fdomain" )) goto fail; /* Now we have the I/O base address and interrupt from the PCI configuration registers. */ *irq = pci_irq; *iobase = pci_base; *ret_pdev = pdev; #if DEBUG_DETECT printk( "scsi: <fdomain> TMC-3260 detect:" " IRQ = %d, I/O base = 0x%x [0x%lx]\n", *irq, *iobase, pci_base ); #endif if (!fdomain_is_valid_port(pci_base)) { printk(KERN_ERR "scsi: <fdomain> PCI card detected, but driver not loaded (invalid port)\n" ); release_region(pci_base, 0x10); goto fail; } /* Fill in a few global variables. Ugh. */ bios_major = bios_minor = -1; PCI_bus = 1; PCI_dev = pdev; Quantum = 0; bios_base = 0; return 1; fail: pci_dev_put(pdev); return 0; } #endif struct Scsi_Host *__fdomain_16x0_detect(struct scsi_host_template *tpnt ) { int retcode; struct Scsi_Host *shpnt; struct pci_dev *pdev = NULL; if (setup_called) { #if DEBUG_DETECT printk( "scsi: <fdomain> No BIOS, using port_base = 0x%x, irq = %d\n", port_base, interrupt_level ); #endif if (!request_region(port_base, 0x10, "fdomain")) { printk( "scsi: <fdomain> port 0x%x is busy\n", port_base ); printk( "scsi: <fdomain> Bad LILO/INSMOD parameters?\n" ); return NULL; } if (!fdomain_is_valid_port( port_base )) { printk( "scsi: <fdomain> Cannot locate chip at port base 0x%x\n", port_base ); printk( "scsi: <fdomain> Bad LILO/INSMOD parameters?\n" ); release_region(port_base, 0x10); return NULL; } } else { int flag = 0; #ifdef CONFIG_PCI /* Try PCI detection first */ flag = fdomain_pci_bios_detect( &interrupt_level, &port_base, &pdev ); #endif if (!flag) { /* Then try ISA bus detection */ flag = fdomain_isa_detect( &interrupt_level, &port_base ); if (!flag) { printk( "scsi: <fdomain> Detection failed (no card)\n" ); return NULL; } } } fdomain_16x0_bus_reset(NULL); if (fdomain_test_loopback()) { printk(KERN_ERR "scsi: <fdomain> Detection failed (loopback test failed at port base 0x%x)\n", port_base); if (setup_called) { printk(KERN_ERR "scsi: <fdomain> Bad LILO/INSMOD parameters?\n"); } goto fail; } if (this_id) { tpnt->this_id = (this_id & 0x07); adapter_mask = (1 << tpnt->this_id); } else { if (PCI_bus || (bios_major == 3 && bios_minor >= 2) || bios_major < 0) { tpnt->this_id = 7; adapter_mask = 0x80; } else { tpnt->this_id = 6; adapter_mask = 0x40; } } /* Print out a banner here in case we can't get resources. */ shpnt = scsi_register( tpnt, 0 ); if(shpnt == NULL) { release_region(port_base, 0x10); return NULL; } shpnt->irq = interrupt_level; shpnt->io_port = port_base; shpnt->n_io_port = 0x10; print_banner( shpnt ); /* Log IRQ with kernel */ if (!interrupt_level) { printk(KERN_ERR "scsi: <fdomain> Card Detected, but driver not loaded (no IRQ)\n" ); goto fail; } else { /* Register the IRQ with the kernel */ retcode = request_irq( interrupt_level, do_fdomain_16x0_intr, pdev?IRQF_SHARED:0, "fdomain", shpnt); if (retcode < 0) { if (retcode == -EINVAL) { printk(KERN_ERR "scsi: <fdomain> IRQ %d is bad!\n", interrupt_level ); printk(KERN_ERR " This shouldn't happen!\n" ); printk(KERN_ERR " Send mail to faith@acm.org\n" ); } else if (retcode == -EBUSY) { printk(KERN_ERR "scsi: <fdomain> IRQ %d is already in use!\n", interrupt_level ); printk(KERN_ERR " Please use another IRQ!\n" ); } else { printk(KERN_ERR "scsi: <fdomain> Error getting IRQ %d\n", interrupt_level ); printk(KERN_ERR " This shouldn't happen!\n" ); printk(KERN_ERR " Send mail to faith@acm.org\n" ); } printk(KERN_ERR "scsi: <fdomain> Detected, but driver not loaded (IRQ)\n" ); goto fail; } } return shpnt; fail: pci_dev_put(pdev); release_region(port_base, 0x10); return NULL; } static int fdomain_16x0_detect(struct scsi_host_template *tpnt) { if (fdomain) fdomain_setup(fdomain); return (__fdomain_16x0_detect(tpnt) != NULL); } static const char *fdomain_16x0_info( struct Scsi_Host *ignore ) { static char buffer[128]; char *pt; strcpy( buffer, "Future Domain 16-bit SCSI Driver Version" ); if (strchr( VERSION, ':')) { /* Assume VERSION is an RCS Revision string */ strcat( buffer, strchr( VERSION, ':' ) + 1 ); pt = strrchr( buffer, '$') - 1; if (!pt) /* Stripped RCS Revision string? */ pt = buffer + strlen( buffer ) - 1; if (*pt != ' ') ++pt; *pt = '\0'; } else { /* Assume VERSION is a number */ strcat( buffer, " " VERSION ); } return buffer; } #if 0 static int fdomain_arbitrate( void ) { int status = 0; unsigned long timeout; #if EVERY_ACCESS printk( "fdomain_arbitrate()\n" ); #endif outb(0x00, port_base + SCSI_Cntl); /* Disable data drivers */ outb(adapter_mask, port_base + SCSI_Data_NoACK); /* Set our id bit */ outb(0x04 | PARITY_MASK, port_base + TMC_Cntl); /* Start arbitration */ timeout = 500; do { status = inb(port_base + TMC_Status); /* Read adapter status */ if (status & 0x02) /* Arbitration complete */ return 0; mdelay(1); /* Wait one millisecond */ } while (--timeout); /* Make bus idle */ fdomain_make_bus_idle(); #if EVERY_ACCESS printk( "Arbitration failed, status = %x\n", status ); #endif #if ERRORS_ONLY printk( "scsi: <fdomain> Arbitration failed, status = %x\n", status ); #endif return 1; } #endif static int fdomain_select( int target ) { int status; unsigned long timeout; #if ERRORS_ONLY static int flag = 0; #endif outb(0x82, port_base + SCSI_Cntl); /* Bus Enable + Select */ outb(adapter_mask | (1 << target), port_base + SCSI_Data_NoACK); /* Stop arbitration and enable parity */ outb(PARITY_MASK, port_base + TMC_Cntl); timeout = 350; /* 350 msec */ do { status = inb(port_base + SCSI_Status); /* Read adapter status */ if (status & 1) { /* Busy asserted */ /* Enable SCSI Bus (on error, should make bus idle with 0) */ outb(0x80, port_base + SCSI_Cntl); return 0; } mdelay(1); /* wait one msec */ } while (--timeout); /* Make bus idle */ fdomain_make_bus_idle(); #if EVERY_ACCESS if (!target) printk( "Selection failed\n" ); #endif #if ERRORS_ONLY if (!target) { if (!flag) /* Skip first failure for all chips. */ ++flag; else printk( "scsi: <fdomain> Selection failed\n" ); } #endif return 1; } static void my_done(int error) { if (in_command) { in_command = 0; outb(0x00, port_base + Interrupt_Cntl); fdomain_make_bus_idle(); current_SC->result = error; if (current_SC->scsi_done) current_SC->scsi_done( current_SC ); else panic( "scsi: <fdomain> current_SC->scsi_done() == NULL" ); } else { panic( "scsi: <fdomain> my_done() called outside of command\n" ); } #if DEBUG_RACE in_interrupt_flag = 0; #endif } static irqreturn_t do_fdomain_16x0_intr(int irq, void *dev_id) { unsigned long flags; int status; int done = 0; unsigned data_count; /* The fdomain_16x0_intr is only called via the interrupt handler. The goal of the sti() here is to allow other interruptions while this routine is running. */ /* Check for other IRQ sources */ if ((inb(port_base + TMC_Status) & 0x01) == 0) return IRQ_NONE; /* It is our IRQ */ outb(0x00, port_base + Interrupt_Cntl); /* We usually have one spurious interrupt after each command. Ignore it. */ if (!in_command || !current_SC) { /* Spurious interrupt */ #if EVERY_ACCESS printk( "Spurious interrupt, in_command = %d, current_SC = %x\n", in_command, current_SC ); #endif return IRQ_NONE; } /* Abort calls my_done, so we do nothing here. */ if (current_SC->SCp.phase & aborted) { #if DEBUG_ABORT printk( "scsi: <fdomain> Interrupt after abort, ignoring\n" ); #endif /* return IRQ_HANDLED; */ } #if DEBUG_RACE ++in_interrupt_flag; #endif if (current_SC->SCp.phase & in_arbitration) { status = inb(port_base + TMC_Status); /* Read adapter status */ if (!(status & 0x02)) { #if EVERY_ACCESS printk( " AFAIL " ); #endif spin_lock_irqsave(current_SC->device->host->host_lock, flags); my_done( DID_BUS_BUSY << 16 ); spin_unlock_irqrestore(current_SC->device->host->host_lock, flags); return IRQ_HANDLED; } current_SC->SCp.phase = in_selection; outb(0x40 | FIFO_COUNT, port_base + Interrupt_Cntl); outb(0x82, port_base + SCSI_Cntl); /* Bus Enable + Select */ outb(adapter_mask | (1 << scmd_id(current_SC)), port_base + SCSI_Data_NoACK); /* Stop arbitration and enable parity */ outb(0x10 | PARITY_MASK, port_base + TMC_Cntl); #if DEBUG_RACE in_interrupt_flag = 0; #endif return IRQ_HANDLED; } else if (current_SC->SCp.phase & in_selection) { status = inb(port_base + SCSI_Status); if (!(status & 0x01)) { /* Try again, for slow devices */ if (fdomain_select( scmd_id(current_SC) )) { #if EVERY_ACCESS printk( " SFAIL " ); #endif spin_lock_irqsave(current_SC->device->host->host_lock, flags); my_done( DID_NO_CONNECT << 16 ); spin_unlock_irqrestore(current_SC->device->host->host_lock, flags); return IRQ_HANDLED; } else { #if EVERY_ACCESS printk( " AltSel " ); #endif /* Stop arbitration and enable parity */ outb(0x10 | PARITY_MASK, port_base + TMC_Cntl); } } current_SC->SCp.phase = in_other; outb(0x90 | FIFO_COUNT, port_base + Interrupt_Cntl); outb(0x80, port_base + SCSI_Cntl); #if DEBUG_RACE in_interrupt_flag = 0; #endif return IRQ_HANDLED; } /* current_SC->SCp.phase == in_other: this is the body of the routine */ status = inb(port_base + SCSI_Status); if (status & 0x10) { /* REQ */ switch (status & 0x0e) { case 0x08: /* COMMAND OUT */ outb(current_SC->cmnd[current_SC->SCp.sent_command++], port_base + Write_SCSI_Data); #if EVERY_ACCESS printk( "CMD = %x,", current_SC->cmnd[ current_SC->SCp.sent_command - 1] ); #endif break; case 0x00: /* DATA OUT -- tmc18c50/tmc18c30 only */ if (chip != tmc1800 && !current_SC->SCp.have_data_in) { current_SC->SCp.have_data_in = -1; outb(0xd0 | PARITY_MASK, port_base + TMC_Cntl); } break; case 0x04: /* DATA IN -- tmc18c50/tmc18c30 only */ if (chip != tmc1800 && !current_SC->SCp.have_data_in) { current_SC->SCp.have_data_in = 1; outb(0x90 | PARITY_MASK, port_base + TMC_Cntl); } break; case 0x0c: /* STATUS IN */ current_SC->SCp.Status = inb(port_base + Read_SCSI_Data); #if EVERY_ACCESS printk( "Status = %x, ", current_SC->SCp.Status ); #endif #if ERRORS_ONLY if (current_SC->SCp.Status && current_SC->SCp.Status != 2 && current_SC->SCp.Status != 8) { printk( "scsi: <fdomain> target = %d, command = %x, status = %x\n", current_SC->device->id, current_SC->cmnd[0], current_SC->SCp.Status ); } #endif break; case 0x0a: /* MESSAGE OUT */ outb(MESSAGE_REJECT, port_base + Write_SCSI_Data); /* Reject */ break; case 0x0e: /* MESSAGE IN */ current_SC->SCp.Message = inb(port_base + Read_SCSI_Data); #if EVERY_ACCESS printk( "Message = %x, ", current_SC->SCp.Message ); #endif if (!current_SC->SCp.Message) ++done; #if DEBUG_MESSAGES || EVERY_ACCESS if (current_SC->SCp.Message) { printk( "scsi: <fdomain> message = %x\n", current_SC->SCp.Message ); } #endif break; } } if (chip == tmc1800 && !current_SC->SCp.have_data_in && (current_SC->SCp.sent_command >= current_SC->cmd_len)) { if(current_SC->sc_data_direction == DMA_TO_DEVICE) { current_SC->SCp.have_data_in = -1; outb(0xd0 | PARITY_MASK, port_base + TMC_Cntl); } else { current_SC->SCp.have_data_in = 1; outb(0x90 | PARITY_MASK, port_base + TMC_Cntl); } } if (current_SC->SCp.have_data_in == -1) { /* DATA OUT */ while ((data_count = FIFO_Size - inw(port_base + FIFO_Data_Count)) > 512) { #if EVERY_ACCESS printk( "DC=%d, ", data_count ) ; #endif if (data_count > current_SC->SCp.this_residual) data_count = current_SC->SCp.this_residual; if (data_count > 0) { #if EVERY_ACCESS printk( "%d OUT, ", data_count ); #endif if (data_count == 1) { outb(*current_SC->SCp.ptr++, port_base + Write_FIFO); --current_SC->SCp.this_residual; } else { data_count >>= 1; outsw(port_base + Write_FIFO, current_SC->SCp.ptr, data_count); current_SC->SCp.ptr += 2 * data_count; current_SC->SCp.this_residual -= 2 * data_count; } } if (!current_SC->SCp.this_residual) { if (current_SC->SCp.buffers_residual) { --current_SC->SCp.buffers_residual; ++current_SC->SCp.buffer; current_SC->SCp.ptr = page_address(current_SC->SCp.buffer->page) + current_SC->SCp.buffer->offset; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; } else break; } } } if (current_SC->SCp.have_data_in == 1) { /* DATA IN */ while ((data_count = inw(port_base + FIFO_Data_Count)) > 0) { #if EVERY_ACCESS printk( "DC=%d, ", data_count ); #endif if (data_count > current_SC->SCp.this_residual) data_count = current_SC->SCp.this_residual; if (data_count) { #if EVERY_ACCESS printk( "%d IN, ", data_count ); #endif if (data_count == 1) { *current_SC->SCp.ptr++ = inb(port_base + Read_FIFO); --current_SC->SCp.this_residual; } else { data_count >>= 1; /* Number of words */ insw(port_base + Read_FIFO, current_SC->SCp.ptr, data_count); current_SC->SCp.ptr += 2 * data_count; current_SC->SCp.this_residual -= 2 * data_count; } } if (!current_SC->SCp.this_residual && current_SC->SCp.buffers_residual) { --current_SC->SCp.buffers_residual; ++current_SC->SCp.buffer; current_SC->SCp.ptr = page_address(current_SC->SCp.buffer->page) + current_SC->SCp.buffer->offset; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; } } } if (done) { #if EVERY_ACCESS printk( " ** IN DONE %d ** ", current_SC->SCp.have_data_in ); #endif #if ERRORS_ONLY if (current_SC->cmnd[0] == REQUEST_SENSE && !current_SC->SCp.Status) { char *buf = scsi_sglist(current_SC); if ((unsigned char)(*(buf + 2)) & 0x0f) { unsigned char key; unsigned char code; unsigned char qualifier; key = (unsigned char)(*(buf + 2)) & 0x0f; code = (unsigned char)(*(buf + 12)); qualifier = (unsigned char)(*(buf + 13)); if (key != UNIT_ATTENTION && !(key == NOT_READY && code == 0x04 && (!qualifier || qualifier == 0x02 || qualifier == 0x01)) && !(key == ILLEGAL_REQUEST && (code == 0x25 || code == 0x24 || !code))) printk( "scsi: <fdomain> REQUEST SENSE" " Key = %x, Code = %x, Qualifier = %x\n", key, code, qualifier ); } } #endif #if EVERY_ACCESS printk( "BEFORE MY_DONE. . ." ); #endif spin_lock_irqsave(current_SC->device->host->host_lock, flags); my_done( (current_SC->SCp.Status & 0xff) | ((current_SC->SCp.Message & 0xff) << 8) | (DID_OK << 16) ); spin_unlock_irqrestore(current_SC->device->host->host_lock, flags); #if EVERY_ACCESS printk( "RETURNING.\n" ); #endif } else { if (current_SC->SCp.phase & disconnect) { outb(0xd0 | FIFO_COUNT, port_base + Interrupt_Cntl); outb(0x00, port_base + SCSI_Cntl); } else { outb(0x90 | FIFO_COUNT, port_base + Interrupt_Cntl); } } #if DEBUG_RACE in_interrupt_flag = 0; #endif return IRQ_HANDLED; } static int fdomain_16x0_queue(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) { if (in_command) { panic( "scsi: <fdomain> fdomain_16x0_queue() NOT REENTRANT!\n" ); } #if EVERY_ACCESS printk( "queue: target = %d cmnd = 0x%02x pieces = %d size = %u\n", SCpnt->target, *(unsigned char *)SCpnt->cmnd, scsi_sg_count(SCpnt), scsi_bufflen(SCpnt)); #endif fdomain_make_bus_idle(); current_SC = SCpnt; /* Save this for the done function */ current_SC->scsi_done = done; /* Initialize static data */ if (scsi_sg_count(current_SC)) { current_SC->SCp.buffer = scsi_sglist(current_SC); current_SC->SCp.ptr = page_address(current_SC->SCp.buffer->page) + current_SC->SCp.buffer->offset; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; current_SC->SCp.buffers_residual = scsi_sg_count(current_SC) - 1; } else { current_SC->SCp.ptr = 0; current_SC->SCp.this_residual = 0; current_SC->SCp.buffer = NULL; current_SC->SCp.buffers_residual = 0; } current_SC->SCp.Status = 0; current_SC->SCp.Message = 0; current_SC->SCp.have_data_in = 0; current_SC->SCp.sent_command = 0; current_SC->SCp.phase = in_arbitration; /* Start arbitration */ outb(0x00, port_base + Interrupt_Cntl); outb(0x00, port_base + SCSI_Cntl); /* Disable data drivers */ outb(adapter_mask, port_base + SCSI_Data_NoACK); /* Set our id bit */ ++in_command; outb(0x20, port_base + Interrupt_Cntl); outb(0x14 | PARITY_MASK, port_base + TMC_Cntl); /* Start arbitration */ return 0; } #if DEBUG_ABORT static void print_info(struct scsi_cmnd *SCpnt) { unsigned int imr; unsigned int irr; unsigned int isr; if (!SCpnt || !SCpnt->device || !SCpnt->device->host) { printk(KERN_WARNING "scsi: <fdomain> Cannot provide detailed information\n"); return; } printk(KERN_INFO "%s\n", fdomain_16x0_info( SCpnt->device->host ) ); print_banner(SCpnt->device->host); switch (SCpnt->SCp.phase) { case in_arbitration: printk("arbitration"); break; case in_selection: printk("selection"); break; case in_other: printk("other"); break; default: printk("unknown"); break; } printk( " (%d), target = %d cmnd = 0x%02x pieces = %d size = %u\n", SCpnt->SCp.phase, SCpnt->device->id, *(unsigned char *)SCpnt->cmnd, scsi_sg_count(SCpnt), scsi_bufflen(SCpnt)); printk( "sent_command = %d, have_data_in = %d, timeout = %d\n", SCpnt->SCp.sent_command, SCpnt->SCp.have_data_in, SCpnt->timeout ); #if DEBUG_RACE printk( "in_interrupt_flag = %d\n", in_interrupt_flag ); #endif imr = (inb( 0x0a1 ) << 8) + inb( 0x21 ); outb( 0x0a, 0xa0 ); irr = inb( 0xa0 ) << 8; outb( 0x0a, 0x20 ); irr += inb( 0x20 ); outb( 0x0b, 0xa0 ); isr = inb( 0xa0 ) << 8; outb( 0x0b, 0x20 ); isr += inb( 0x20 ); /* Print out interesting information */ printk( "IMR = 0x%04x", imr ); if (imr & (1 << interrupt_level)) printk( " (masked)" ); printk( ", IRR = 0x%04x, ISR = 0x%04x\n", irr, isr ); printk( "SCSI Status = 0x%02x\n", inb(port_base + SCSI_Status)); printk( "TMC Status = 0x%02x", inb(port_base + TMC_Status)); if (inb((port_base + TMC_Status) & 1)) printk( " (interrupt)" ); printk( "\n" ); printk("Interrupt Status = 0x%02x", inb(port_base + Interrupt_Status)); if (inb(port_base + Interrupt_Status) & 0x08) printk( " (enabled)" ); printk( "\n" ); if (chip == tmc18c50 || chip == tmc18c30) { printk("FIFO Status = 0x%02x\n", inb(port_base + FIFO_Status)); printk( "Int. Condition = 0x%02x\n", inb( port_base + Interrupt_Cond ) ); } printk( "Configuration 1 = 0x%02x\n", inb( port_base + Configuration1 ) ); if (chip == tmc18c50 || chip == tmc18c30) printk( "Configuration 2 = 0x%02x\n", inb( port_base + Configuration2 ) ); } #endif static int fdomain_16x0_abort(struct scsi_cmnd *SCpnt) { #if EVERY_ACCESS || ERRORS_ONLY || DEBUG_ABORT printk( "scsi: <fdomain> abort " ); #endif if (!in_command) { #if EVERY_ACCESS || ERRORS_ONLY printk( " (not in command)\n" ); #endif return FAILED; } else printk( "\n" ); #if DEBUG_ABORT print_info( SCpnt ); #endif fdomain_make_bus_idle(); current_SC->SCp.phase |= aborted; current_SC->result = DID_ABORT << 16; /* Aborts are not done well. . . */ my_done(DID_ABORT << 16); return SUCCESS; } int fdomain_16x0_bus_reset(struct scsi_cmnd *SCpnt) { unsigned long flags; local_irq_save(flags); outb(1, port_base + SCSI_Cntl); do_pause( 2 ); outb(0, port_base + SCSI_Cntl); do_pause( 115 ); outb(0, port_base + SCSI_Mode_Cntl); outb(PARITY_MASK, port_base + TMC_Cntl); local_irq_restore(flags); return SUCCESS; } static int fdomain_16x0_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *info_array) { int drive; int size = capacity; unsigned long offset; struct drive_info { unsigned short cylinders; unsigned char heads; unsigned char sectors; } i; /* NOTES: The RAM area starts at 0x1f00 from the bios_base address. For BIOS Version 2.0: The drive parameter table seems to start at 0x1f30. The first byte's purpose is not known. Next is the cylinder, head, and sector information. The last 4 bytes appear to be the drive's size in sectors. The other bytes in the drive parameter table are unknown. If anyone figures them out, please send me mail, and I will update these notes. Tape drives do not get placed in this table. There is another table at 0x1fea: If the byte is 0x01, then the SCSI ID is not in use. If the byte is 0x18 or 0x48, then the SCSI ID is in use, although tapes don't seem to be in this table. I haven't seen any other numbers (in a limited sample). 0x1f2d is a drive count (i.e., not including tapes) The table at 0x1fcc are I/O ports addresses for the various operations. I calculate these by hand in this driver code. For the ISA-200S version of BIOS Version 2.0: The drive parameter table starts at 0x1f33. WARNING: Assume that the table entry is 25 bytes long. Someone needs to check this for the Quantum ISA-200S card. For BIOS Version 3.2: The drive parameter table starts at 0x1f70. Each entry is 0x0a bytes long. Heads are one less than we need to report. */ if (MAJOR(bdev->bd_dev) != SCSI_DISK0_MAJOR) { printk("scsi: <fdomain> fdomain_16x0_biosparam: too many disks"); return 0; } drive = MINOR(bdev->bd_dev) >> 4; if (bios_major == 2) { switch (Quantum) { case 2: /* ISA_200S */ /* The value of 25 has never been verified. It should probably be 15. */ offset = 0x1f33 + drive * 25; break; case 3: /* ISA_250MG */ offset = 0x1f36 + drive * 15; break; case 4: /* ISA_200S (another one) */ offset = 0x1f34 + drive * 15; break; default: offset = 0x1f31 + drive * 25; break; } memcpy_fromio( &i, bios_mem + offset, sizeof( struct drive_info ) ); info_array[0] = i.heads; info_array[1] = i.sectors; info_array[2] = i.cylinders; } else if (bios_major == 3 && bios_minor >= 0 && bios_minor < 4) { /* 3.0 and 3.2 BIOS */ memcpy_fromio( &i, bios_mem + 0x1f71 + drive * 10, sizeof( struct drive_info ) ); info_array[0] = i.heads + 1; info_array[1] = i.sectors; info_array[2] = i.cylinders; } else { /* 3.4 BIOS (and up?) */ /* This algorithm was provided by Future Domain (much thanks!). */ unsigned char *p = scsi_bios_ptable(bdev); if (p && p[65] == 0xaa && p[64] == 0x55 /* Partition table valid */ && p[4]) { /* Partition type */ /* The partition table layout is as follows: Start: 0x1b3h Offset: 0 = partition status 1 = starting head 2 = starting sector and cylinder (word, encoded) 4 = partition type 5 = ending head 6 = ending sector and cylinder (word, encoded) 8 = starting absolute sector (double word) c = number of sectors (double word) Signature: 0x1fe = 0x55aa So, this algorithm assumes: 1) the first partition table is in use, 2) the data in the first entry is correct, and 3) partitions never divide cylinders Note that (1) may be FALSE for NetBSD (and other BSD flavors), as well as for Linux. Note also, that Linux doesn't pay any attention to the fields that are used by this algorithm -- it only uses the absolute sector data. Recent versions of Linux's fdisk(1) will fill this data in correctly, and forthcoming versions will check for consistency. Checking for a non-zero partition type is not part of the Future Domain algorithm, but it seemed to be a reasonable thing to do, especially in the Linux and BSD worlds. */ info_array[0] = p[5] + 1; /* heads */ info_array[1] = p[6] & 0x3f; /* sectors */ } else { /* Note that this new method guarantees that there will always be less than 1024 cylinders on a platter. This is good for drives up to approximately 7.85GB (where 1GB = 1024 * 1024 kB). */ if ((unsigned int)size >= 0x7e0000U) { info_array[0] = 0xff; /* heads = 255 */ info_array[1] = 0x3f; /* sectors = 63 */ } else if ((unsigned int)size >= 0x200000U) { info_array[0] = 0x80; /* heads = 128 */ info_array[1] = 0x3f; /* sectors = 63 */ } else { info_array[0] = 0x40; /* heads = 64 */ info_array[1] = 0x20; /* sectors = 32 */ } } /* For both methods, compute the cylinders */ info_array[2] = (unsigned int)size / (info_array[0] * info_array[1] ); kfree(p); } return 0; } static int fdomain_16x0_release(struct Scsi_Host *shpnt) { if (shpnt->irq) free_irq(shpnt->irq, shpnt); if (shpnt->io_port && shpnt->n_io_port) release_region(shpnt->io_port, shpnt->n_io_port); if (PCI_bus) pci_dev_put(PCI_dev); return 0; } struct scsi_host_template fdomain_driver_template = { .module = THIS_MODULE, .name = "fdomain", .proc_name = "fdomain", .detect = fdomain_16x0_detect, .info = fdomain_16x0_info, .queuecommand = fdomain_16x0_queue, .eh_abort_handler = fdomain_16x0_abort, .eh_bus_reset_handler = fdomain_16x0_bus_reset, .bios_param = fdomain_16x0_biosparam, .release = fdomain_16x0_release, .can_queue = 1, .this_id = 6, .sg_tablesize = 64, .cmd_per_lun = 1, .use_clustering = DISABLE_CLUSTERING, }; #ifndef PCMCIA #ifdef CONFIG_PCI static struct pci_device_id fdomain_pci_tbl[] __devinitdata = { { PCI_VENDOR_ID_FD, PCI_DEVICE_ID_FD_36C70, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { } }; MODULE_DEVICE_TABLE(pci, fdomain_pci_tbl); #endif #define driver_template fdomain_driver_template #include "scsi_module.c" #endif