summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/msm/msm_gpu.c
blob: bf4ee2766431ef8f1b07bf53bcfac5659dc2784e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
/*
 * Copyright (C) 2013 Red Hat
 * Author: Rob Clark <robdclark@gmail.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "msm_gpu.h"
#include "msm_gem.h"
#include "msm_mmu.h"
#include "msm_fence.h"
#include "msm_gpu_trace.h"
#include "adreno/adreno_gpu.h"

#include <generated/utsrelease.h>
#include <linux/string_helpers.h>
#include <linux/pm_opp.h>
#include <linux/devfreq.h>
#include <linux/devcoredump.h>

/*
 * Power Management:
 */

static int msm_devfreq_target(struct device *dev, unsigned long *freq,
		u32 flags)
{
	struct msm_gpu *gpu = platform_get_drvdata(to_platform_device(dev));
	struct dev_pm_opp *opp;

	opp = devfreq_recommended_opp(dev, freq, flags);

	if (IS_ERR(opp))
		return PTR_ERR(opp);

	if (gpu->funcs->gpu_set_freq)
		gpu->funcs->gpu_set_freq(gpu, (u64)*freq);
	else
		clk_set_rate(gpu->core_clk, *freq);

	dev_pm_opp_put(opp);

	return 0;
}

static int msm_devfreq_get_dev_status(struct device *dev,
		struct devfreq_dev_status *status)
{
	struct msm_gpu *gpu = platform_get_drvdata(to_platform_device(dev));
	ktime_t time;

	if (gpu->funcs->gpu_get_freq)
		status->current_frequency = gpu->funcs->gpu_get_freq(gpu);
	else
		status->current_frequency = clk_get_rate(gpu->core_clk);

	status->busy_time = gpu->funcs->gpu_busy(gpu);

	time = ktime_get();
	status->total_time = ktime_us_delta(time, gpu->devfreq.time);
	gpu->devfreq.time = time;

	return 0;
}

static int msm_devfreq_get_cur_freq(struct device *dev, unsigned long *freq)
{
	struct msm_gpu *gpu = platform_get_drvdata(to_platform_device(dev));

	if (gpu->funcs->gpu_get_freq)
		*freq = gpu->funcs->gpu_get_freq(gpu);
	else
		*freq = clk_get_rate(gpu->core_clk);

	return 0;
}

static struct devfreq_dev_profile msm_devfreq_profile = {
	.polling_ms = 10,
	.target = msm_devfreq_target,
	.get_dev_status = msm_devfreq_get_dev_status,
	.get_cur_freq = msm_devfreq_get_cur_freq,
};

static void msm_devfreq_init(struct msm_gpu *gpu)
{
	/* We need target support to do devfreq */
	if (!gpu->funcs->gpu_busy)
		return;

	msm_devfreq_profile.initial_freq = gpu->fast_rate;

	/*
	 * Don't set the freq_table or max_state and let devfreq build the table
	 * from OPP
	 */

	gpu->devfreq.devfreq = devm_devfreq_add_device(&gpu->pdev->dev,
			&msm_devfreq_profile, "simple_ondemand", NULL);

	if (IS_ERR(gpu->devfreq.devfreq)) {
		DRM_DEV_ERROR(&gpu->pdev->dev, "Couldn't initialize GPU devfreq\n");
		gpu->devfreq.devfreq = NULL;
	}

	devfreq_suspend_device(gpu->devfreq.devfreq);
}

static int enable_pwrrail(struct msm_gpu *gpu)
{
	struct drm_device *dev = gpu->dev;
	int ret = 0;

	if (gpu->gpu_reg) {
		ret = regulator_enable(gpu->gpu_reg);
		if (ret) {
			DRM_DEV_ERROR(dev->dev, "failed to enable 'gpu_reg': %d\n", ret);
			return ret;
		}
	}

	if (gpu->gpu_cx) {
		ret = regulator_enable(gpu->gpu_cx);
		if (ret) {
			DRM_DEV_ERROR(dev->dev, "failed to enable 'gpu_cx': %d\n", ret);
			return ret;
		}
	}

	return 0;
}

static int disable_pwrrail(struct msm_gpu *gpu)
{
	if (gpu->gpu_cx)
		regulator_disable(gpu->gpu_cx);
	if (gpu->gpu_reg)
		regulator_disable(gpu->gpu_reg);
	return 0;
}

static int enable_clk(struct msm_gpu *gpu)
{
	if (gpu->core_clk && gpu->fast_rate)
		clk_set_rate(gpu->core_clk, gpu->fast_rate);

	/* Set the RBBM timer rate to 19.2Mhz */
	if (gpu->rbbmtimer_clk)
		clk_set_rate(gpu->rbbmtimer_clk, 19200000);

	return clk_bulk_prepare_enable(gpu->nr_clocks, gpu->grp_clks);
}

static int disable_clk(struct msm_gpu *gpu)
{
	clk_bulk_disable_unprepare(gpu->nr_clocks, gpu->grp_clks);

	/*
	 * Set the clock to a deliberately low rate. On older targets the clock
	 * speed had to be non zero to avoid problems. On newer targets this
	 * will be rounded down to zero anyway so it all works out.
	 */
	if (gpu->core_clk)
		clk_set_rate(gpu->core_clk, 27000000);

	if (gpu->rbbmtimer_clk)
		clk_set_rate(gpu->rbbmtimer_clk, 0);

	return 0;
}

static int enable_axi(struct msm_gpu *gpu)
{
	if (gpu->ebi1_clk)
		clk_prepare_enable(gpu->ebi1_clk);
	return 0;
}

static int disable_axi(struct msm_gpu *gpu)
{
	if (gpu->ebi1_clk)
		clk_disable_unprepare(gpu->ebi1_clk);
	return 0;
}

void msm_gpu_resume_devfreq(struct msm_gpu *gpu)
{
	gpu->devfreq.busy_cycles = 0;
	gpu->devfreq.time = ktime_get();

	devfreq_resume_device(gpu->devfreq.devfreq);
}

int msm_gpu_pm_resume(struct msm_gpu *gpu)
{
	int ret;

	DBG("%s", gpu->name);

	ret = enable_pwrrail(gpu);
	if (ret)
		return ret;

	ret = enable_clk(gpu);
	if (ret)
		return ret;

	ret = enable_axi(gpu);
	if (ret)
		return ret;

	msm_gpu_resume_devfreq(gpu);

	gpu->needs_hw_init = true;

	return 0;
}

int msm_gpu_pm_suspend(struct msm_gpu *gpu)
{
	int ret;

	DBG("%s", gpu->name);

	devfreq_suspend_device(gpu->devfreq.devfreq);

	ret = disable_axi(gpu);
	if (ret)
		return ret;

	ret = disable_clk(gpu);
	if (ret)
		return ret;

	ret = disable_pwrrail(gpu);
	if (ret)
		return ret;

	return 0;
}

int msm_gpu_hw_init(struct msm_gpu *gpu)
{
	int ret;

	WARN_ON(!mutex_is_locked(&gpu->dev->struct_mutex));

	if (!gpu->needs_hw_init)
		return 0;

	disable_irq(gpu->irq);
	ret = gpu->funcs->hw_init(gpu);
	if (!ret)
		gpu->needs_hw_init = false;
	enable_irq(gpu->irq);

	return ret;
}

#ifdef CONFIG_DEV_COREDUMP
static ssize_t msm_gpu_devcoredump_read(char *buffer, loff_t offset,
		size_t count, void *data, size_t datalen)
{
	struct msm_gpu *gpu = data;
	struct drm_print_iterator iter;
	struct drm_printer p;
	struct msm_gpu_state *state;

	state = msm_gpu_crashstate_get(gpu);
	if (!state)
		return 0;

	iter.data = buffer;
	iter.offset = 0;
	iter.start = offset;
	iter.remain = count;

	p = drm_coredump_printer(&iter);

	drm_printf(&p, "---\n");
	drm_printf(&p, "kernel: " UTS_RELEASE "\n");
	drm_printf(&p, "module: " KBUILD_MODNAME "\n");
	drm_printf(&p, "time: %lld.%09ld\n",
		state->time.tv_sec, state->time.tv_nsec);
	if (state->comm)
		drm_printf(&p, "comm: %s\n", state->comm);
	if (state->cmd)
		drm_printf(&p, "cmdline: %s\n", state->cmd);

	gpu->funcs->show(gpu, state, &p);

	msm_gpu_crashstate_put(gpu);

	return count - iter.remain;
}

static void msm_gpu_devcoredump_free(void *data)
{
	struct msm_gpu *gpu = data;

	msm_gpu_crashstate_put(gpu);
}

static void msm_gpu_crashstate_get_bo(struct msm_gpu_state *state,
		struct msm_gem_object *obj, u64 iova, u32 flags)
{
	struct msm_gpu_state_bo *state_bo = &state->bos[state->nr_bos];

	/* Don't record write only objects */
	state_bo->size = obj->base.size;
	state_bo->iova = iova;

	/* Only store data for non imported buffer objects marked for read */
	if ((flags & MSM_SUBMIT_BO_READ) && !obj->base.import_attach) {
		void *ptr;

		state_bo->data = kvmalloc(obj->base.size, GFP_KERNEL);
		if (!state_bo->data)
			goto out;

		ptr = msm_gem_get_vaddr_active(&obj->base);
		if (IS_ERR(ptr)) {
			kvfree(state_bo->data);
			state_bo->data = NULL;
			goto out;
		}

		memcpy(state_bo->data, ptr, obj->base.size);
		msm_gem_put_vaddr(&obj->base);
	}
out:
	state->nr_bos++;
}

static void msm_gpu_crashstate_capture(struct msm_gpu *gpu,
		struct msm_gem_submit *submit, char *comm, char *cmd)
{
	struct msm_gpu_state *state;

	/* Check if the target supports capturing crash state */
	if (!gpu->funcs->gpu_state_get)
		return;

	/* Only save one crash state at a time */
	if (gpu->crashstate)
		return;

	state = gpu->funcs->gpu_state_get(gpu);
	if (IS_ERR_OR_NULL(state))
		return;

	/* Fill in the additional crash state information */
	state->comm = kstrdup(comm, GFP_KERNEL);
	state->cmd = kstrdup(cmd, GFP_KERNEL);

	if (submit) {
		int i;

		state->bos = kcalloc(submit->nr_cmds,
			sizeof(struct msm_gpu_state_bo), GFP_KERNEL);

		for (i = 0; state->bos && i < submit->nr_cmds; i++) {
			int idx = submit->cmd[i].idx;

			msm_gpu_crashstate_get_bo(state, submit->bos[idx].obj,
				submit->bos[idx].iova, submit->bos[idx].flags);
		}
	}

	/* Set the active crash state to be dumped on failure */
	gpu->crashstate = state;

	/* FIXME: Release the crashstate if this errors out? */
	dev_coredumpm(gpu->dev->dev, THIS_MODULE, gpu, 0, GFP_KERNEL,
		msm_gpu_devcoredump_read, msm_gpu_devcoredump_free);
}
#else
static void msm_gpu_crashstate_capture(struct msm_gpu *gpu,
		struct msm_gem_submit *submit, char *comm, char *cmd)
{
}
#endif

/*
 * Hangcheck detection for locked gpu:
 */

static void update_fences(struct msm_gpu *gpu, struct msm_ringbuffer *ring,
		uint32_t fence)
{
	struct msm_gem_submit *submit;

	list_for_each_entry(submit, &ring->submits, node) {
		if (submit->seqno > fence)
			break;

		msm_update_fence(submit->ring->fctx,
			submit->fence->seqno);
	}
}

static struct msm_gem_submit *
find_submit(struct msm_ringbuffer *ring, uint32_t fence)
{
	struct msm_gem_submit *submit;

	WARN_ON(!mutex_is_locked(&ring->gpu->dev->struct_mutex));

	list_for_each_entry(submit, &ring->submits, node)
		if (submit->seqno == fence)
			return submit;

	return NULL;
}

static void retire_submits(struct msm_gpu *gpu);

static void recover_worker(struct work_struct *work)
{
	struct msm_gpu *gpu = container_of(work, struct msm_gpu, recover_work);
	struct drm_device *dev = gpu->dev;
	struct msm_drm_private *priv = dev->dev_private;
	struct msm_gem_submit *submit;
	struct msm_ringbuffer *cur_ring = gpu->funcs->active_ring(gpu);
	char *comm = NULL, *cmd = NULL;
	int i;

	mutex_lock(&dev->struct_mutex);

	DRM_DEV_ERROR(dev->dev, "%s: hangcheck recover!\n", gpu->name);

	submit = find_submit(cur_ring, cur_ring->memptrs->fence + 1);
	if (submit) {
		struct task_struct *task;

		/* Increment the fault counts */
		gpu->global_faults++;
		submit->queue->faults++;

		task = get_pid_task(submit->pid, PIDTYPE_PID);
		if (task) {
			comm = kstrdup(task->comm, GFP_KERNEL);
			cmd = kstrdup_quotable_cmdline(task, GFP_KERNEL);
			put_task_struct(task);
		}

		if (comm && cmd) {
			DRM_DEV_ERROR(dev->dev, "%s: offending task: %s (%s)\n",
				gpu->name, comm, cmd);

			msm_rd_dump_submit(priv->hangrd, submit,
				"offending task: %s (%s)", comm, cmd);
		} else
			msm_rd_dump_submit(priv->hangrd, submit, NULL);
	}

	/* Record the crash state */
	pm_runtime_get_sync(&gpu->pdev->dev);
	msm_gpu_crashstate_capture(gpu, submit, comm, cmd);
	pm_runtime_put_sync(&gpu->pdev->dev);

	kfree(cmd);
	kfree(comm);

	/*
	 * Update all the rings with the latest and greatest fence.. this
	 * needs to happen after msm_rd_dump_submit() to ensure that the
	 * bo's referenced by the offending submit are still around.
	 */
	for (i = 0; i < gpu->nr_rings; i++) {
		struct msm_ringbuffer *ring = gpu->rb[i];

		uint32_t fence = ring->memptrs->fence;

		/*
		 * For the current (faulting?) ring/submit advance the fence by
		 * one more to clear the faulting submit
		 */
		if (ring == cur_ring)
			fence++;

		update_fences(gpu, ring, fence);
	}

	if (msm_gpu_active(gpu)) {
		/* retire completed submits, plus the one that hung: */
		retire_submits(gpu);

		pm_runtime_get_sync(&gpu->pdev->dev);
		gpu->funcs->recover(gpu);
		pm_runtime_put_sync(&gpu->pdev->dev);

		/*
		 * Replay all remaining submits starting with highest priority
		 * ring
		 */
		for (i = 0; i < gpu->nr_rings; i++) {
			struct msm_ringbuffer *ring = gpu->rb[i];

			list_for_each_entry(submit, &ring->submits, node)
				gpu->funcs->submit(gpu, submit, NULL);
		}
	}

	mutex_unlock(&dev->struct_mutex);

	msm_gpu_retire(gpu);
}

static void hangcheck_timer_reset(struct msm_gpu *gpu)
{
	DBG("%s", gpu->name);
	mod_timer(&gpu->hangcheck_timer,
			round_jiffies_up(jiffies + DRM_MSM_HANGCHECK_JIFFIES));
}

static void hangcheck_handler(struct timer_list *t)
{
	struct msm_gpu *gpu = from_timer(gpu, t, hangcheck_timer);
	struct drm_device *dev = gpu->dev;
	struct msm_drm_private *priv = dev->dev_private;
	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
	uint32_t fence = ring->memptrs->fence;

	if (fence != ring->hangcheck_fence) {
		/* some progress has been made.. ya! */
		ring->hangcheck_fence = fence;
	} else if (fence < ring->seqno) {
		/* no progress and not done.. hung! */
		ring->hangcheck_fence = fence;
		DRM_DEV_ERROR(dev->dev, "%s: hangcheck detected gpu lockup rb %d!\n",
				gpu->name, ring->id);
		DRM_DEV_ERROR(dev->dev, "%s:     completed fence: %u\n",
				gpu->name, fence);
		DRM_DEV_ERROR(dev->dev, "%s:     submitted fence: %u\n",
				gpu->name, ring->seqno);

		queue_work(priv->wq, &gpu->recover_work);
	}

	/* if still more pending work, reset the hangcheck timer: */
	if (ring->seqno > ring->hangcheck_fence)
		hangcheck_timer_reset(gpu);

	/* workaround for missing irq: */
	queue_work(priv->wq, &gpu->retire_work);
}

/*
 * Performance Counters:
 */

/* called under perf_lock */
static int update_hw_cntrs(struct msm_gpu *gpu, uint32_t ncntrs, uint32_t *cntrs)
{
	uint32_t current_cntrs[ARRAY_SIZE(gpu->last_cntrs)];
	int i, n = min(ncntrs, gpu->num_perfcntrs);

	/* read current values: */
	for (i = 0; i < gpu->num_perfcntrs; i++)
		current_cntrs[i] = gpu_read(gpu, gpu->perfcntrs[i].sample_reg);

	/* update cntrs: */
	for (i = 0; i < n; i++)
		cntrs[i] = current_cntrs[i] - gpu->last_cntrs[i];

	/* save current values: */
	for (i = 0; i < gpu->num_perfcntrs; i++)
		gpu->last_cntrs[i] = current_cntrs[i];

	return n;
}

static void update_sw_cntrs(struct msm_gpu *gpu)
{
	ktime_t time;
	uint32_t elapsed;
	unsigned long flags;

	spin_lock_irqsave(&gpu->perf_lock, flags);
	if (!gpu->perfcntr_active)
		goto out;

	time = ktime_get();
	elapsed = ktime_to_us(ktime_sub(time, gpu->last_sample.time));

	gpu->totaltime += elapsed;
	if (gpu->last_sample.active)
		gpu->activetime += elapsed;

	gpu->last_sample.active = msm_gpu_active(gpu);
	gpu->last_sample.time = time;

out:
	spin_unlock_irqrestore(&gpu->perf_lock, flags);
}

void msm_gpu_perfcntr_start(struct msm_gpu *gpu)
{
	unsigned long flags;

	pm_runtime_get_sync(&gpu->pdev->dev);

	spin_lock_irqsave(&gpu->perf_lock, flags);
	/* we could dynamically enable/disable perfcntr registers too.. */
	gpu->last_sample.active = msm_gpu_active(gpu);
	gpu->last_sample.time = ktime_get();
	gpu->activetime = gpu->totaltime = 0;
	gpu->perfcntr_active = true;
	update_hw_cntrs(gpu, 0, NULL);
	spin_unlock_irqrestore(&gpu->perf_lock, flags);
}

void msm_gpu_perfcntr_stop(struct msm_gpu *gpu)
{
	gpu->perfcntr_active = false;
	pm_runtime_put_sync(&gpu->pdev->dev);
}

/* returns -errno or # of cntrs sampled */
int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&gpu->perf_lock, flags);

	if (!gpu->perfcntr_active) {
		ret = -EINVAL;
		goto out;
	}

	*activetime = gpu->activetime;
	*totaltime = gpu->totaltime;

	gpu->activetime = gpu->totaltime = 0;

	ret = update_hw_cntrs(gpu, ncntrs, cntrs);

out:
	spin_unlock_irqrestore(&gpu->perf_lock, flags);

	return ret;
}

/*
 * Cmdstream submission/retirement:
 */

static void retire_submit(struct msm_gpu *gpu, struct msm_ringbuffer *ring,
		struct msm_gem_submit *submit)
{
	int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
	volatile struct msm_gpu_submit_stats *stats;
	u64 elapsed, clock = 0;
	int i;

	stats = &ring->memptrs->stats[index];
	/* Convert 19.2Mhz alwayson ticks to nanoseconds for elapsed time */
	elapsed = (stats->alwayson_end - stats->alwayson_start) * 10000;
	do_div(elapsed, 192);

	/* Calculate the clock frequency from the number of CP cycles */
	if (elapsed) {
		clock = (stats->cpcycles_end - stats->cpcycles_start) * 1000;
		do_div(clock, elapsed);
	}

	trace_msm_gpu_submit_retired(submit, elapsed, clock,
		stats->alwayson_start, stats->alwayson_end);

	for (i = 0; i < submit->nr_bos; i++) {
		struct msm_gem_object *msm_obj = submit->bos[i].obj;
		/* move to inactive: */
		msm_gem_move_to_inactive(&msm_obj->base);
		msm_gem_unpin_iova(&msm_obj->base, gpu->aspace);
		drm_gem_object_put(&msm_obj->base);
	}

	pm_runtime_mark_last_busy(&gpu->pdev->dev);
	pm_runtime_put_autosuspend(&gpu->pdev->dev);
	msm_gem_submit_free(submit);
}

static void retire_submits(struct msm_gpu *gpu)
{
	struct drm_device *dev = gpu->dev;
	struct msm_gem_submit *submit, *tmp;
	int i;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	/* Retire the commits starting with highest priority */
	for (i = 0; i < gpu->nr_rings; i++) {
		struct msm_ringbuffer *ring = gpu->rb[i];

		list_for_each_entry_safe(submit, tmp, &ring->submits, node) {
			if (dma_fence_is_signaled(submit->fence))
				retire_submit(gpu, ring, submit);
		}
	}
}

static void retire_worker(struct work_struct *work)
{
	struct msm_gpu *gpu = container_of(work, struct msm_gpu, retire_work);
	struct drm_device *dev = gpu->dev;
	int i;

	for (i = 0; i < gpu->nr_rings; i++)
		update_fences(gpu, gpu->rb[i], gpu->rb[i]->memptrs->fence);

	mutex_lock(&dev->struct_mutex);
	retire_submits(gpu);
	mutex_unlock(&dev->struct_mutex);
}

/* call from irq handler to schedule work to retire bo's */
void msm_gpu_retire(struct msm_gpu *gpu)
{
	struct msm_drm_private *priv = gpu->dev->dev_private;
	queue_work(priv->wq, &gpu->retire_work);
	update_sw_cntrs(gpu);
}

/* add bo's to gpu's ring, and kick gpu: */
void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
		struct msm_file_private *ctx)
{
	struct drm_device *dev = gpu->dev;
	struct msm_drm_private *priv = dev->dev_private;
	struct msm_ringbuffer *ring = submit->ring;
	int i;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pm_runtime_get_sync(&gpu->pdev->dev);

	msm_gpu_hw_init(gpu);

	submit->seqno = ++ring->seqno;

	list_add_tail(&submit->node, &ring->submits);

	msm_rd_dump_submit(priv->rd, submit, NULL);

	update_sw_cntrs(gpu);

	for (i = 0; i < submit->nr_bos; i++) {
		struct msm_gem_object *msm_obj = submit->bos[i].obj;
		uint64_t iova;

		/* can't happen yet.. but when we add 2d support we'll have
		 * to deal w/ cross-ring synchronization:
		 */
		WARN_ON(is_active(msm_obj) && (msm_obj->gpu != gpu));

		/* submit takes a reference to the bo and iova until retired: */
		drm_gem_object_get(&msm_obj->base);
		msm_gem_get_and_pin_iova(&msm_obj->base,
				submit->gpu->aspace, &iova);

		if (submit->bos[i].flags & MSM_SUBMIT_BO_WRITE)
			msm_gem_move_to_active(&msm_obj->base, gpu, true, submit->fence);
		else if (submit->bos[i].flags & MSM_SUBMIT_BO_READ)
			msm_gem_move_to_active(&msm_obj->base, gpu, false, submit->fence);
	}

	gpu->funcs->submit(gpu, submit, ctx);
	priv->lastctx = ctx;

	hangcheck_timer_reset(gpu);
}

/*
 * Init/Cleanup:
 */

static irqreturn_t irq_handler(int irq, void *data)
{
	struct msm_gpu *gpu = data;
	return gpu->funcs->irq(gpu);
}

static int get_clocks(struct platform_device *pdev, struct msm_gpu *gpu)
{
	int ret = msm_clk_bulk_get(&pdev->dev, &gpu->grp_clks);

	if (ret < 1) {
		gpu->nr_clocks = 0;
		return ret;
	}

	gpu->nr_clocks = ret;

	gpu->core_clk = msm_clk_bulk_get_clock(gpu->grp_clks,
		gpu->nr_clocks, "core");

	gpu->rbbmtimer_clk = msm_clk_bulk_get_clock(gpu->grp_clks,
		gpu->nr_clocks, "rbbmtimer");

	return 0;
}

static struct msm_gem_address_space *
msm_gpu_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev,
		uint64_t va_start, uint64_t va_end)
{
	struct msm_gem_address_space *aspace;
	int ret;

	/*
	 * Setup IOMMU.. eventually we will (I think) do this once per context
	 * and have separate page tables per context.  For now, to keep things
	 * simple and to get something working, just use a single address space:
	 */
	if (!adreno_is_a2xx(to_adreno_gpu(gpu))) {
		struct iommu_domain *iommu = iommu_domain_alloc(&platform_bus_type);
		if (!iommu)
			return NULL;

		iommu->geometry.aperture_start = va_start;
		iommu->geometry.aperture_end = va_end;

		DRM_DEV_INFO(gpu->dev->dev, "%s: using IOMMU\n", gpu->name);

		aspace = msm_gem_address_space_create(&pdev->dev, iommu, "gpu");
		if (IS_ERR(aspace))
			iommu_domain_free(iommu);
	} else {
		aspace = msm_gem_address_space_create_a2xx(&pdev->dev, gpu, "gpu",
			va_start, va_end);
	}

	if (IS_ERR(aspace)) {
		DRM_DEV_ERROR(gpu->dev->dev, "failed to init mmu: %ld\n",
			PTR_ERR(aspace));
		return ERR_CAST(aspace);
	}

	ret = aspace->mmu->funcs->attach(aspace->mmu, NULL, 0);
	if (ret) {
		msm_gem_address_space_put(aspace);
		return ERR_PTR(ret);
	}

	return aspace;
}

int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
		const char *name, struct msm_gpu_config *config)
{
	int i, ret, nr_rings = config->nr_rings;
	void *memptrs;
	uint64_t memptrs_iova;

	if (WARN_ON(gpu->num_perfcntrs > ARRAY_SIZE(gpu->last_cntrs)))
		gpu->num_perfcntrs = ARRAY_SIZE(gpu->last_cntrs);

	gpu->dev = drm;
	gpu->funcs = funcs;
	gpu->name = name;

	INIT_LIST_HEAD(&gpu->active_list);
	INIT_WORK(&gpu->retire_work, retire_worker);
	INIT_WORK(&gpu->recover_work, recover_worker);


	timer_setup(&gpu->hangcheck_timer, hangcheck_handler, 0);

	spin_lock_init(&gpu->perf_lock);


	/* Map registers: */
	gpu->mmio = msm_ioremap(pdev, config->ioname, name);
	if (IS_ERR(gpu->mmio)) {
		ret = PTR_ERR(gpu->mmio);
		goto fail;
	}

	/* Get Interrupt: */
	gpu->irq = platform_get_irq(pdev, 0);
	if (gpu->irq < 0) {
		ret = gpu->irq;
		DRM_DEV_ERROR(drm->dev, "failed to get irq: %d\n", ret);
		goto fail;
	}

	ret = devm_request_irq(&pdev->dev, gpu->irq, irq_handler,
			IRQF_TRIGGER_HIGH, gpu->name, gpu);
	if (ret) {
		DRM_DEV_ERROR(drm->dev, "failed to request IRQ%u: %d\n", gpu->irq, ret);
		goto fail;
	}

	ret = get_clocks(pdev, gpu);
	if (ret)
		goto fail;

	gpu->ebi1_clk = msm_clk_get(pdev, "bus");
	DBG("ebi1_clk: %p", gpu->ebi1_clk);
	if (IS_ERR(gpu->ebi1_clk))
		gpu->ebi1_clk = NULL;

	/* Acquire regulators: */
	gpu->gpu_reg = devm_regulator_get(&pdev->dev, "vdd");
	DBG("gpu_reg: %p", gpu->gpu_reg);
	if (IS_ERR(gpu->gpu_reg))
		gpu->gpu_reg = NULL;

	gpu->gpu_cx = devm_regulator_get(&pdev->dev, "vddcx");
	DBG("gpu_cx: %p", gpu->gpu_cx);
	if (IS_ERR(gpu->gpu_cx))
		gpu->gpu_cx = NULL;

	gpu->pdev = pdev;
	platform_set_drvdata(pdev, gpu);

	msm_devfreq_init(gpu);

	gpu->aspace = msm_gpu_create_address_space(gpu, pdev,
		config->va_start, config->va_end);

	if (gpu->aspace == NULL)
		DRM_DEV_INFO(drm->dev, "%s: no IOMMU, fallback to VRAM carveout!\n", name);
	else if (IS_ERR(gpu->aspace)) {
		ret = PTR_ERR(gpu->aspace);
		goto fail;
	}

	memptrs = msm_gem_kernel_new(drm,
		sizeof(struct msm_rbmemptrs) * nr_rings,
		MSM_BO_UNCACHED, gpu->aspace, &gpu->memptrs_bo,
		&memptrs_iova);

	if (IS_ERR(memptrs)) {
		ret = PTR_ERR(memptrs);
		DRM_DEV_ERROR(drm->dev, "could not allocate memptrs: %d\n", ret);
		goto fail;
	}

	msm_gem_object_set_name(gpu->memptrs_bo, "memptrs");

	if (nr_rings > ARRAY_SIZE(gpu->rb)) {
		DRM_DEV_INFO_ONCE(drm->dev, "Only creating %zu ringbuffers\n",
			ARRAY_SIZE(gpu->rb));
		nr_rings = ARRAY_SIZE(gpu->rb);
	}

	/* Create ringbuffer(s): */
	for (i = 0; i < nr_rings; i++) {
		gpu->rb[i] = msm_ringbuffer_new(gpu, i, memptrs, memptrs_iova);

		if (IS_ERR(gpu->rb[i])) {
			ret = PTR_ERR(gpu->rb[i]);
			DRM_DEV_ERROR(drm->dev,
				"could not create ringbuffer %d: %d\n", i, ret);
			goto fail;
		}

		memptrs += sizeof(struct msm_rbmemptrs);
		memptrs_iova += sizeof(struct msm_rbmemptrs);
	}

	gpu->nr_rings = nr_rings;

	return 0;

fail:
	for (i = 0; i < ARRAY_SIZE(gpu->rb); i++)  {
		msm_ringbuffer_destroy(gpu->rb[i]);
		gpu->rb[i] = NULL;
	}

	msm_gem_kernel_put(gpu->memptrs_bo, gpu->aspace, false);

	platform_set_drvdata(pdev, NULL);
	return ret;
}

void msm_gpu_cleanup(struct msm_gpu *gpu)
{
	int i;

	DBG("%s", gpu->name);

	WARN_ON(!list_empty(&gpu->active_list));

	for (i = 0; i < ARRAY_SIZE(gpu->rb); i++) {
		msm_ringbuffer_destroy(gpu->rb[i]);
		gpu->rb[i] = NULL;
	}

	msm_gem_kernel_put(gpu->memptrs_bo, gpu->aspace, false);

	if (!IS_ERR_OR_NULL(gpu->aspace)) {
		gpu->aspace->mmu->funcs->detach(gpu->aspace->mmu,
			NULL, 0);
		msm_gem_address_space_put(gpu->aspace);
	}
}
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/export.h>
#include <linux/i2c.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/types.h>

#include <asm/byteorder.h>

#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_hdcp.h>
#include <drm/drm_probe_helper.h>
#include <drm/i915_drm.h>

#include "i915_debugfs.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_atomic.h"
#include "intel_audio.h"
#include "intel_connector.h"
#include "intel_ddi.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_dp_link_training.h"
#include "intel_dp_mst.h"
#include "intel_dpio_phy.h"
#include "intel_fifo_underrun.h"
#include "intel_hdcp.h"
#include "intel_hdmi.h"
#include "intel_hotplug.h"
#include "intel_lspcon.h"
#include "intel_lvds.h"
#include "intel_panel.h"
#include "intel_psr.h"
#include "intel_sideband.h"
#include "intel_tc.h"
#include "intel_vdsc.h"

#define DP_DPRX_ESI_LEN 14

/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER	61440
#define DP_DSC_MIN_SUPPORTED_BPC		8
#define DP_DSC_MAX_SUPPORTED_BPC		10

/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

/* DP DSC FEC Overhead factor = 1/(0.972261) */
#define DP_DSC_FEC_OVERHEAD_FACTOR		972261

/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

struct dp_link_dpll {
	int clock;
	struct dpll dpll;
};

static const struct dp_link_dpll g4x_dpll[] = {
	{ 162000,
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
	{ 270000,
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
	{ 162000,
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
	{ 270000,
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

static const struct dp_link_dpll vlv_dpll[] = {
	{ 162000,
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
	{ 270000,
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};

/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

/**
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
bool intel_dp_is_edp(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
}

static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
}

static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
				      enum pipe pipe);
static void intel_dp_unset_edid(struct intel_dp *intel_dp);

/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
	static const int dp_rates[] = {
		162000, 270000, 540000, 810000
	};
	int i, max_rate;

	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);

	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
			break;
		intel_dp->sink_rates[i] = dp_rates[i];
	}

	intel_dp->num_sink_rates = i;
}

/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
{
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
}

/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);

	return min3(source_max, sink_max, fia_max);
}

int intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
	return intel_dp->max_link_lane_count;
}

int
intel_dp_link_required(int pixel_clock, int bpp)
{
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
}

int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
}

static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

static int cnl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

	u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
		return 540000;

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
		return 810000;

	/* For other SKUs, max rate on ports A and D is 5.4G */
	if (port == PORT_A || port == PORT_D)
		return 540000;

	return 810000;
}

static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);

	if (intel_phy_is_combo(dev_priv, phy) &&
	    !IS_ELKHARTLAKE(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return 540000;

	return 810000;
}

static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
{
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	const struct ddi_vbt_port_info *info =
		&dev_priv->vbt.ddi_port_info[dig_port->base.port];
	const int *source_rates;
	int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;

	/* This should only be done once */
	WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);

	if (INTEL_GEN(dev_priv) >= 10) {
		source_rates = cnl_rates;
		size = ARRAY_SIZE(cnl_rates);
		if (IS_GEN(dev_priv, 10))
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
	} else if (IS_GEN9_BC(dev_priv)) {
		source_rates = skl_rates;
		size = ARRAY_SIZE(skl_rates);
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
	} else {
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
	}

	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
{
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);

	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
		intel_dp->common_rates[0] = 162000;
		intel_dp->num_common_rates = 1;
	}
}

static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
				       u8 lane_count)
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
		return false;

	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
		return false;

	return true;
}

static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
						     u8 lane_count)
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
					    int link_rate, u8 lane_count)
{
	int index;

	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
	} else if (lane_count > 1) {
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
			DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
			return 0;
		}
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
		intel_dp->max_link_lane_count = lane_count >> 1;
	} else {
		DRM_ERROR("Link Training Unsuccessful\n");
		return -1;
	}

	return 0;
}

u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
	return div_u64(mul_u32_u32(mode_clock, 1000000U),
		       DP_DSC_FEC_OVERHEAD_FACTOR);
}

static u16 intel_dp_dsc_get_output_bpp(u32 link_clock, u32 lane_count,
				       u32 mode_clock, u32 mode_hdisplay)
{
	u32 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
	 * for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8) /
			 intel_dp_mode_to_fec_clock(mode_clock);
	DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
	max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER / mode_hdisplay;
	DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
		DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
			      bits_per_pixel, valid_dsc_bpp[0]);
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				       int mode_clock, int mode_hdisplay)
{
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
		DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
			      max_slice_width);
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(u8, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

	DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
	return 0;
}

static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
	int max_dotclk;
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;

	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);

	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
		if (mode->hdisplay > fixed_mode->hdisplay)
			return MODE_PANEL;

		if (mode->vdisplay > fixed_mode->vdisplay)
			return MODE_PANEL;

		target_clock = fixed_mode->clock;
	}

	max_link_clock = intel_dp_max_link_rate(intel_dp);
	max_lanes = intel_dp_max_lane_count(intel_dp);

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
			dsc_max_output_bpp =
				intel_dp_dsc_get_output_bpp(max_link_clock,
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

	return MODE_OK;
}

u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
{
	int i;
	u32 v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((u32)src[i]) << ((3 - i) * 8);
	return v;
}

static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

static void
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
					      bool force_disable_vdd);
static void
intel_dp_pps_init(struct intel_dp *intel_dp);

static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	intel_wakeref_t wakeref;

	/*
	 * See intel_power_sequencer_reset() why we need
	 * a power domain reference here.
	 */
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));

	mutex_lock(&dev_priv->pps_mutex);

	return wakeref;
}

static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	mutex_unlock(&dev_priv->pps_mutex);
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
}

#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
	u32 DP;

	if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
		 "skipping pipe %c power sequencer kick due to port %c being active\n",
		 pipe_name(pipe), port_name(intel_dig_port->base.port)))
		return;

	DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
		      pipe_name(pipe), port_name(intel_dig_port->base.port));

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

	if (IS_CHERRYVIEW(dev_priv))
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);

	pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
	if (!pll_enabled) {
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
			DRM_ERROR("Failed to force on pll for pipe %c!\n",
				  pipe_name(pipe));
			return;
		}
	}

	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
	 * to make this power sequencer lock onto the port.
	 * Otherwise even VDD force bit won't work.
	 */
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);

	if (!pll_enabled) {
		vlv_force_pll_off(dev_priv, pipe);

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
}

static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

		if (encoder->type == INTEL_OUTPUT_EDP) {
			WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
				intel_dp->active_pipe != intel_dp->pps_pipe);

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
			WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
	WARN_ON(!intel_dp_is_edp(intel_dp));

	WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
		intel_dp->active_pipe != intel_dp->pps_pipe);

	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

	pipe = vlv_find_free_pps(dev_priv);

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
	if (WARN_ON(pipe == INVALID_PIPE))
		pipe = PIPE_A;

	vlv_steal_power_sequencer(dev_priv, pipe);
	intel_dp->pps_pipe = pipe;

	DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe),
		      port_name(intel_dig_port->base.port));

	/* init power sequencer on this pipe and port */
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);

	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);

	return intel_dp->pps_pipe;
}

static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	int backlight_controller = dev_priv->vbt.backlight.controller;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
	WARN_ON(!intel_dp_is_edp(intel_dp));

	if (!intel_dp->pps_reset)
		return backlight_controller;

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);

	return backlight_controller;
}

typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
	return I915_READ(PP_STATUS(pipe)) & PP_ON;
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
	return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}

static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
{
	enum pipe pipe;

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
		u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
			PANEL_PORT_SELECT_MASK;

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

		if (!pipe_check(dev_priv, pipe))
			continue;

		return pipe;
	}

	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum port port = intel_dig_port->base.port;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
		DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
			      port_name(port));
		return;
	}

	DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
		      port_name(port), pipe_name(intel_dp->pps_pipe));

	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
}

void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;

	if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
		    !IS_GEN9_LP(dev_priv)))
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

		WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

		if (IS_GEN9_LP(dev_priv))
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
	}
}

struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

static void intel_pps_get_registers(struct intel_dp *intel_dp,
				    struct pps_registers *regs)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	int pps_idx = 0;

	memset(regs, 0, sizeof(*regs));

	if (IS_GEN9_LP(dev_priv))
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);

	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
		regs->pp_div = INVALID_MMIO_REG;
	else
		regs->pp_div = PP_DIVISOR(pps_idx);
}

static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
{
	struct pps_registers regs;

	intel_pps_get_registers(intel_dp, &regs);

	return regs.pp_ctrl;
}

static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
{
	struct pps_registers regs;

	intel_pps_get_registers(intel_dp, &regs);

	return regs.pp_stat;
}

/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	intel_wakeref_t wakeref;

	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
		return 0;

	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
			pp_div = I915_READ(pp_div_reg);
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
			I915_WRITE(pp_div_reg, pp_div | 0x1F);
			I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
			msleep(intel_dp->panel_power_cycle_delay);
		}
	}

	return 0;
}

static bool edp_have_panel_power(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	lockdep_assert_held(&dev_priv->pps_mutex);

	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
}

static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	lockdep_assert_held(&dev_priv->pps_mutex);

	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

	return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
}

static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	if (!intel_dp_is_edp(intel_dp))
		return;

	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
	}
}

static u32
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
{
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	u32 status;
	bool done;

#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
				  msecs_to_jiffies_timeout(10));

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

	if (!done)
		DRM_ERROR("dp aux hw did not signal timeout!\n");
#undef C

	return status;
}

static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	if (index)
		return 0;

	/*
	 * The clock divider is based off the hrawclk, and would like to run at
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
	 */
	return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
}

static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);

	if (index)
		return 0;

	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
	if (dig_port->aux_ch == AUX_CH_A)
		return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
	else
		return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
}

static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);

	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
		/* Workaround for non-ULT HSW */
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
	}

	return ilk_get_aux_clock_divider(intel_dp, index);
}

static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
	u32 precharge, timeout;

	if (IS_GEN(dev_priv, 6))
		precharge = 3;
	else
		precharge = 5;

	if (IS_BROADWELL(dev_priv))
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
	       DP_AUX_CH_CTL_DONE |
	       DP_AUX_CH_CTL_INTERRUPT |
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
	       timeout |
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
}

static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	u32 ret;

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

	if (intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
}

static int
intel_dp_aux_xfer(struct intel_dp *intel_dp,
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
		  u32 aux_send_ctl_flags)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *i915 =
			to_i915(intel_dig_port->base.base.dev);
	struct intel_uncore *uncore = &i915->uncore;
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
	bool is_tc_port = intel_phy_is_tc(i915, phy);
	i915_reg_t ch_ctl, ch_data[5];
	u32 aux_clock_divider;
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
	int i, ret, recv_bytes;
	int try, clock = 0;
	u32 status;
	bool vdd;

	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

	if (is_tc_port)
		intel_tc_port_lock(intel_dig_port);

	aux_wakeref = intel_display_power_get(i915, aux_domain);
	pps_wakeref = pps_lock(intel_dp);

	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
	vdd = edp_panel_vdd_on(intel_dp);

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&i915->pm_qos, 0);

	intel_dp_check_edp(intel_dp);

	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
		status = intel_uncore_read_notrace(uncore, ch_ctl);
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

	if (try == 3) {
		static u32 last_status = -1;
		const u32 status = intel_uncore_read(uncore, ch_ctl);

		if (status != last_status) {
			WARN(1, "dp_aux_ch not started status 0x%08x\n",
			     status);
			last_status = status;
		}

		ret = -EBUSY;
		goto out;
	}

	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;

		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));

			/* Send the command and wait for it to complete */
			intel_uncore_write(uncore, ch_ctl, send_ctl);

			status = intel_dp_aux_wait_done(intel_dp);

			/* Clear done status and any errors */
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);

			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
				continue;
			}
			if (status & DP_AUX_CH_CTL_DONE)
				goto done;
		}
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
		ret = -EBUSY;
		goto out;
	}

done:
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
		ret = -EIO;
		goto out;
	}

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
		ret = -ETIMEDOUT;
		goto out;
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
		DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
			      recv_bytes);
		ret = -EBUSY;
		goto out;
	}

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;

	for (i = 0; i < recv_bytes; i += 4)
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
				    recv + i, recv_bytes - i);

	ret = recv_bytes;
out:
	pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);

	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

	pps_unlock(intel_dp, pps_wakeref);
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);

	if (is_tc_port)
		intel_tc_port_unlock(intel_dig_port);

	return ret;
}

#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
{
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	u8 txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
	int ret;

	intel_dp_aux_header(txbuf, msg);

	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
		rxsize = 2; /* 0 or 1 data bytes */

		if (WARN_ON(txsize > 20))
			return -E2BIG;

		WARN_ON(!msg->buffer != !msg->size);

		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);

		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
					rxbuf, rxsize, 0);
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;

			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
		}
		break;

	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
		rxsize = msg->size + 1;

		if (WARN_ON(rxsize > 20))
			return -E2BIG;

		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
					rxbuf, rxsize, 0);
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
		}
		break;

	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}


static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;

	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
	default:
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
	}
}

static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;

	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
	default:
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
	}
}

static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;

	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
	default:
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
	}
}

static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;

	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
	default:
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
	}
}

static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;

	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
	case AUX_CH_E:
	case AUX_CH_F:
		return DP_AUX_CH_CTL(aux_ch);
	default:
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
	}
}

static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;

	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
	case AUX_CH_E:
	case AUX_CH_F:
		return DP_AUX_CH_DATA(aux_ch, index);
	default:
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
	}
}

static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;

	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}

	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;

	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;

	drm_dp_aux_init(&intel_dp->aux);

	/* Failure to allocate our preferred name is not critical */
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
				       port_name(encoder->port));
	intel_dp->aux.transfer = intel_dp_aux_transfer;
}

bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 540000;
}

bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

static void
intel_dp_set_clock(struct intel_encoder *encoder,
		   struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;

	if (IS_G4X(dev_priv)) {
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
	} else if (IS_CHERRYVIEW(dev_priv)) {
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
	}

	if (divisor && count) {
		for (i = 0; i < count; i++) {
			if (pipe_config->port_clock == divisor[i].clock) {
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
	}
}

static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
	char str[128]; /* FIXME: too big for stack? */

	if ((drm_debug & DRM_UT_KMS) == 0)
		return;

	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
	DRM_DEBUG_KMS("source rates: %s\n", str);

	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
	DRM_DEBUG_KMS("sink rates: %s\n", str);

	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
	DRM_DEBUG_KMS("common rates: %s\n", str);
}

int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
	if (WARN_ON(len <= 0))
		return 162000;

	return intel_dp->common_rates[len - 1];
}

int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);

	if (WARN_ON(i < 0))
		i = 0;

	return i;
}

void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
			   u8 *link_bw, u8 *rate_select)
{
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	return INTEL_GEN(dev_priv) >= 11 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	return INTEL_GEN(dev_priv) >= 10 &&
		pipe_config->cpu_transcoder != TRANSCODER_A;
}

static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
		return false;

	return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp.bpp);
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

	return bpp;
}

/* Adjust link config limits based on compliance test requests. */
void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

		DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

/* Optimize link config in order: max bpp, min clock, min lanes */
static int
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);

		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   output_bpp);

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

					return 0;
				}
			}
		}
	}

	return -EINVAL;
}

static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	u8 dsc_max_bpc;
	int pipe_bpp;
	int ret;

	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
		return -EINVAL;

	dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
			    conn_state->max_requested_bpc);

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
	if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
		DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
		return -EINVAL;
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
		pipe_config->dsc_params.compressed_bpp =
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count =
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
			intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
			DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
			return -EINVAL;
		}
		pipe_config->dsc_params.compressed_bpp = min_t(u16,
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
		pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
		if (pipe_config->dsc_params.slice_count > 1) {
			pipe_config->dsc_params.dsc_split = true;
		} else {
			DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
			return -EINVAL;
		}
	}

	ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
	if (ret < 0) {
		DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
			      "Compressed BPP = %d\n",
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);
		return ret;
	}

	pipe_config->dsc_params.compression_enable = true;
	DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
		      "Compressed Bpp = %d Slice Count = %d\n",
		      pipe_config->pipe_bpp,
		      pipe_config->dsc_params.compressed_bpp,
		      pipe_config->dsc_params.slice_count);

	return 0;
}

int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

static int
intel_dp_compute_link_config(struct intel_encoder *encoder,
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
{
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct link_config_limits limits;
	int common_len;
	int ret;

	common_len = intel_dp_common_len_rate_limit(intel_dp,
						    intel_dp->max_link_rate);

	/* No common link rates between source and sink */
	WARN_ON(common_len <= 0);

	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

	limits.min_bpp = intel_dp_min_bpp(pipe_config);
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);

	if (intel_dp_is_edp(intel_dp)) {
		/*
		 * Use the maximum clock and number of lanes the eDP panel
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
		 */
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
	}

	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max rate %d max bpp %d pixel clock %iKHz\n",
		      limits.max_lane_count,
		      intel_dp->common_rates[limits.max_clock],
		      limits.max_bpp, adjusted_mode->crtc_clock);

	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);

	/* enable compression if the mode doesn't fit available BW */
	DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
	}

	if (pipe_config->dsc_params.compression_enable) {
		DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp,
			      pipe_config->dsc_params.compressed_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->dsc_params.compressed_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	} else {
		DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
			      pipe_config->lane_count, pipe_config->port_clock,
			      pipe_config->pipe_bpp);

		DRM_DEBUG_KMS("DP link rate required %i available %i\n",
			      intel_dp_link_required(adjusted_mode->crtc_clock,
						     pipe_config->pipe_bpp),
			      intel_dp_max_data_rate(pipe_config->port_clock,
						     pipe_config->lane_count));
	}
	return 0;
}

static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
			 struct drm_connector *connector,
			 struct intel_crtc_state *crtc_state)
{
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	int ret;

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

	/* YCBCR 420 output conversion needs a scaler */
	ret = skl_update_scaler_crtc(crtc_state);
	if (ret) {
		DRM_DEBUG_KMS("Scaler allocation for output failed\n");
		return ret;
	}

	intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);

	return 0;
}

bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
		&crtc_state->base.adjusted_mode;

	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

int
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
	enum port port = encoder->port;
	struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
					   DP_DPCD_QUIRK_CONSTANT_N);
	int ret = 0, output_bpp;

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
	else
		ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
					       pipe_config);

	if (ret)
		return ret;

	pipe_config->has_drrs = false;
	if (IS_G4X(dev_priv) || port == PORT_A)
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);

		if (INTEL_GEN(dev_priv) >= 9) {
			ret = skl_update_scaler_crtc(pipe_config);
			if (ret)
				return ret;
		}

		if (HAS_GMCH(dev_priv))
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 conn_state->scaling_mode);
		else
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						conn_state->scaling_mode);
	}

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return -EINVAL;

	if (HAS_GMCH(dev_priv) &&
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
		return -EINVAL;

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
		return -EINVAL;

	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;

	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);

	if (pipe_config->dsc_params.compression_enable)
		output_bpp = pipe_config->dsc_params.compressed_bpp;
	else
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
			       constant_n, pipe_config->fec_enable);

	if (intel_connector->panel.downclock_mode != NULL &&
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
			pipe_config->has_drrs = true;
			intel_link_compute_m_n(output_bpp,
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
					       constant_n, pipe_config->fec_enable);
	}

	if (!HAS_DDI(dev_priv))
		intel_dp_set_clock(encoder, pipe_config);

	intel_psr_compute_config(intel_dp, pipe_config);

	return 0;
}

void intel_dp_set_link_params(struct intel_dp *intel_dp,
			      int link_rate, u8 lane_count,
			      bool link_mst)
{
	intel_dp->link_trained = false;
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
}

static void intel_dp_prepare(struct intel_encoder *encoder,
			     const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	enum port port = encoder->port;
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;

	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));

	/*
	 * There are four kinds of DP registers:
	 *
	 * 	IBX PCH
	 * 	SNB CPU
	 *	IVB CPU
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;

	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);

	/* Split out the IBX/CPU vs CPT settings */

	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			intel_dp->DP |= DP_ENHANCED_FRAMING;

		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
		u32 trans_dp;

		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

		trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
		I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
	} else {
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
			intel_dp->DP |= DP_COLOR_RANGE_16_235;

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			intel_dp->DP |= DP_ENHANCED_FRAMING;

		if (IS_CHERRYVIEW(dev_priv))
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
	}
}

#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)

#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)

#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)

static void intel_pps_verify_state(struct intel_dp *intel_dp);

static void wait_panel_status(struct intel_dp *intel_dp,
				       u32 mask,
				       u32 value)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	i915_reg_t pp_stat_reg, pp_ctrl_reg;

	lockdep_assert_held(&dev_priv->pps_mutex);

	intel_pps_verify_state(intel_dp);

	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);

	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));

	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
				       mask, value, 5000))
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));

	DRM_DEBUG_KMS("Wait complete\n");
}

static void wait_panel_on(struct intel_dp *intel_dp)
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
}

static void wait_panel_off(struct intel_dp *intel_dp)
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
}

static void wait_panel_power_cycle(struct intel_dp *intel_dp)
{
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

	DRM_DEBUG_KMS("Wait for panel power cycle\n");

	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);

	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
}

static void wait_backlight_on(struct intel_dp *intel_dp)
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

static void edp_wait_backlight_off(struct intel_dp *intel_dp)
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}

/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u32 control;

	lockdep_assert_held(&dev_priv->pps_mutex);

	control = I915_READ(_pp_ctrl_reg(intel_dp));
	if (WARN_ON(!HAS_DDI(dev_priv) &&
		    (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
	return control;
}

/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	u32 pp;
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
	bool need_to_disable = !intel_dp->want_panel_vdd;

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!intel_dp_is_edp(intel_dp))
		return false;

	cancel_delayed_work(&intel_dp->panel_vdd_work);
	intel_dp->want_panel_vdd = true;

	if (edp_have_panel_vdd(intel_dp))
		return need_to_disable;

	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));

	DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
		      port_name(intel_dig_port->base.port));

	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);

	pp = ironlake_get_pp_control(intel_dp);
	pp |= EDP_FORCE_VDD;

	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
	if (!edp_have_panel_power(intel_dp)) {
		DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
			      port_name(intel_dig_port->base.port));
		msleep(intel_dp->panel_power_up_delay);
	}

	return need_to_disable;
}

/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
{
	intel_wakeref_t wakeref;
	bool vdd;

	if (!intel_dp_is_edp(intel_dp))
		return;

	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
	I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
	     port_name(dp_to_dig_port(intel_dp)->base.port));
}

static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
	u32 pp;
	i915_reg_t pp_stat_reg, pp_ctrl_reg;

	lockdep_assert_held(&dev_priv->pps_mutex);

	WARN_ON(intel_dp->want_panel_vdd);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
		      port_name(intel_dig_port->base.port));

	pp = ironlake_get_pp_control(intel_dp);
	pp &= ~EDP_FORCE_VDD;

	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);

	/* Make sure sequencer is idle before allowing subsequent activity */
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
	I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));

	if ((pp & PANEL_POWER_ON) == 0)
		intel_dp->panel_power_off_time = ktime_get_boottime();

	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
}

static void edp_panel_vdd_work(struct work_struct *__work)
{
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;

	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
}

static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!intel_dp_is_edp(intel_dp))
		return;

	I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
	     port_name(dp_to_dig_port(intel_dp)->base.port));

	intel_dp->want_panel_vdd = false;

	if (sync)
		edp_panel_vdd_off_sync(intel_dp);
	else
		edp_panel_vdd_schedule_off(intel_dp);
}

static void edp_panel_on(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u32 pp;
	i915_reg_t pp_ctrl_reg;

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!intel_dp_is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
		      port_name(dp_to_dig_port(intel_dp)->base.port));

	if (WARN(edp_have_panel_power(intel_dp),
		 "eDP port %c panel power already on\n",
		 port_name(dp_to_dig_port(intel_dp)->base.port)))
		return;

	wait_panel_power_cycle(intel_dp);

	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp = ironlake_get_pp_control(intel_dp);
	if (IS_GEN(dev_priv, 5)) {
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}

	pp |= PANEL_POWER_ON;
	if (!IS_GEN(dev_priv, 5))
		pp |= PANEL_POWER_RESET;

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);

	wait_panel_on(intel_dp);
	intel_dp->last_power_on = jiffies;

	if (IS_GEN(dev_priv, 5)) {
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
}

void intel_edp_panel_on(struct intel_dp *intel_dp)
{
	intel_wakeref_t wakeref;

	if (!intel_dp_is_edp(intel_dp))
		return;

	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
}


static void edp_panel_off(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	u32 pp;
	i915_reg_t pp_ctrl_reg;

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!intel_dp_is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
		      port_name(dig_port->base.port));

	WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
	     port_name(dig_port->base.port));

	pp = ironlake_get_pp_control(intel_dp);
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
		EDP_BLC_ENABLE);

	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);

	intel_dp->want_panel_vdd = false;

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);

	wait_panel_off(intel_dp);
	intel_dp->panel_power_off_time = ktime_get_boottime();

	/* We got a reference when we enabled the VDD. */
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
}

void intel_edp_panel_off(struct intel_dp *intel_dp)
{
	intel_wakeref_t wakeref;

	if (!intel_dp_is_edp(intel_dp))
		return;

	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
}

/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	intel_wakeref_t wakeref;

	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
	wait_backlight_on(intel_dp);

	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;

		pp = ironlake_get_pp_control(intel_dp);
		pp |= EDP_BLC_ENABLE;

		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}
}

/* Enable backlight PWM and backlight PP control. */
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);

	if (!intel_dp_is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("\n");

	intel_panel_enable_backlight(crtc_state, conn_state);
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	intel_wakeref_t wakeref;

	if (!intel_dp_is_edp(intel_dp))
		return;

	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;

		pp = ironlake_get_pp_control(intel_dp);
		pp &= ~EDP_BLC_ENABLE;

		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
	}

	intel_dp->last_backlight_off = jiffies;
	edp_wait_backlight_off(intel_dp);
}

/* Disable backlight PP control and backlight PWM. */
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);

	if (!intel_dp_is_edp(intel_dp))
		return;

	DRM_DEBUG_KMS("\n");

	_intel_edp_backlight_off(intel_dp);
	intel_panel_disable_backlight(old_conn_state);
}

/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
	struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
	intel_wakeref_t wakeref;
	bool is_enabled;

	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
		is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
	if (is_enabled == enable)
		return;

	DRM_DEBUG_KMS("panel power control backlight %s\n",
		      enable ? "enable" : "disable");

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;

	I915_STATE_WARN(cur_state != state,
			"DP port %c state assertion failure (expected %s, current %s)\n",
			port_name(dig_port->base.port),
			onoff(state), onoff(cur_state));
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
	bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
			onoff(state), onoff(cur_state));
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
				const struct intel_crtc_state *pipe_config)
{
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);

	DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
		      pipe_config->port_clock);

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

	if (pipe_config->port_clock == 162000)
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(500);

	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
	if (IS_GEN(dev_priv, 5))
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);

	intel_dp->DP |= DP_PLL_ENABLE;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(200);
}

static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
{
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	assert_pipe_disabled(dev_priv, crtc->pipe);
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);

	DRM_DEBUG_KMS("disabling eDP PLL\n");

	intel_dp->DP &= ~DP_PLL_ENABLE;

	I915_WRITE(DP_A, intel_dp->DP);
	POSTING_READ(DP_A);
	udelay(200);
}

static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
		intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
	int ret;

	if (!crtc_state->dsc_params.compression_enable)
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
		DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
			      enable ? "enable" : "disable");
}

/* If the sink supports it, try to set the power state appropriately */
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
		if (downstream_hpd_needs_d0(intel_dp))
			return;

		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
	} else {
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
			if (ret == 1)
				break;
			msleep(1);
		}

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
	}

	if (ret != 1)
		DRM_DEBUG_KMS("failed to %s sink power state\n",
			      mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
}

static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
		u32 val = I915_READ(TRANS_DP_CTL(p));

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

	DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

	val = I915_READ(dp_reg);

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	intel_wakeref_t wakeref;
	bool ret;

	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
		return false;

	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);

	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);

	return ret;
}

static void intel_dp_get_config(struct intel_encoder *encoder,
				struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
	enum port port = encoder->port;
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);

	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);

	tmp = I915_READ(intel_dp->output_reg);

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;

	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
		u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;

		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
		if (tmp & DP_SYNC_HS_HIGH)
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;

		if (tmp & DP_SYNC_VS_HIGH)
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}

	pipe_config->base.adjusted_mode.flags |= flags;

	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
		pipe_config->limited_color_range = true;

	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

	intel_dp_get_m_n(crtc, pipe_config);

	if (port == PORT_A) {
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}

	pipe_config->base.adjusted_mode.crtc_clock =
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);

	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
	}
}

static void intel_disable_dp(struct intel_encoder *encoder,
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

	intel_dp->link_trained = false;

	if (old_crtc_state->has_audio)
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
	intel_edp_panel_vdd_on(intel_dp);
	intel_edp_backlight_off(old_conn_state);
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
	intel_edp_panel_off(intel_dp);
}

static void g4x_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void vlv_disable_dp(struct intel_encoder *encoder,
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
	intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}

static void g4x_post_disable_dp(struct intel_encoder *encoder,
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	enum port port = encoder->port;

	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
	intel_dp_link_down(encoder, old_crtc_state);

	/* Only ilk+ has port A */
	if (port == PORT_A)
		ironlake_edp_pll_off(intel_dp, old_crtc_state);
}

static void vlv_post_disable_dp(struct intel_encoder *encoder,
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
{
	intel_dp_link_down(encoder, old_crtc_state);
}

static void chv_post_disable_dp(struct intel_encoder *encoder,
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	intel_dp_link_down(encoder, old_crtc_state);

	vlv_dpio_get(dev_priv);

	/* Assert data lane reset */
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);

	vlv_dpio_put(dev_priv);
}

static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
			 u32 *DP,
			 u8 dp_train_pat)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum port port = intel_dig_port->base.port;
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);

	if (dp_train_pat & train_pat_mask)
		DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
			      dp_train_pat & train_pat_mask);

	if (HAS_DDI(dev_priv)) {
		u32 temp = I915_READ(DP_TP_CTL(port));

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
		switch (dp_train_pat & train_pat_mask) {
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
		case DP_TRAINING_PATTERN_4:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
			break;
		}
		I915_WRITE(DP_TP_CTL(port), temp);

	} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
		   (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF_CPT;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		case DP_TRAINING_PATTERN_3:
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
			break;
		}

	} else {
		*DP &= ~DP_LINK_TRAIN_MASK;

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			*DP |= DP_LINK_TRAIN_OFF;
			break;
		case DP_TRAINING_PATTERN_1:
			*DP |= DP_LINK_TRAIN_PAT_1;
			break;
		case DP_TRAINING_PATTERN_2:
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		case DP_TRAINING_PATTERN_3:
			DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
			*DP |= DP_LINK_TRAIN_PAT_2;
			break;
		}
	}
}

static void intel_dp_enable_port(struct intel_dp *intel_dp,
				 const struct intel_crtc_state *old_crtc_state)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	/* enable with pattern 1 (as per spec) */

	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
	if (old_crtc_state->has_audio)
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
}

static void intel_enable_dp(struct intel_encoder *encoder,
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
	u32 dp_reg = I915_READ(intel_dp->output_reg);
	enum pipe pipe = crtc->pipe;
	intel_wakeref_t wakeref;

	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;

	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);

		intel_dp_enable_port(intel_dp, pipe_config);

		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		unsigned int lane_mask = 0x0;

		if (IS_CHERRYVIEW(dev_priv))
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);

		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
	}

	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	if (pipe_config->has_audio) {
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
				 pipe_name(pipe));
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
	}
}

static void g4x_enable_dp(struct intel_encoder *encoder,
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
{
	intel_enable_dp(encoder, pipe_config, conn_state);
	intel_edp_backlight_on(pipe_config, conn_state);
}

static void vlv_enable_dp(struct intel_encoder *encoder,
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
{
	intel_edp_backlight_on(pipe_config, conn_state);
}

static void g4x_pre_enable_dp(struct intel_encoder *encoder,
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	enum port port = encoder->port;

	intel_dp_prepare(encoder, pipe_config);

	/* Only ilk+ has port A */
	if (port == PORT_A)
		ironlake_edp_pll_on(intel_dp, pipe_config);
}

static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
	enum pipe pipe = intel_dp->pps_pipe;
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);

	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

	if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
		return;

	edp_panel_vdd_off_sync(intel_dp);

	/*
	 * VLV seems to get confused when multiple power sequencers
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
	 * selected in multiple power sequencers, but let's clear the
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
	DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
		      pipe_name(pipe), port_name(intel_dig_port->base.port));
	I915_WRITE(pp_on_reg, 0);
	POSTING_READ(pp_on_reg);

	intel_dp->pps_pipe = INVALID_PIPE;
}

static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

	for_each_intel_dp(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
		enum port port = encoder->port;

		WARN(intel_dp->active_pipe == pipe,
		     "stealing pipe %c power sequencer from active (e)DP port %c\n",
		     pipe_name(pipe), port_name(port));

		if (intel_dp->pps_pipe != pipe)
			continue;

		DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
			      pipe_name(pipe), port_name(port));

		/* make sure vdd is off before we steal it */
		vlv_detach_power_sequencer(intel_dp);
	}
}

static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);

	lockdep_assert_held(&dev_priv->pps_mutex);

	WARN_ON(intel_dp->active_pipe != INVALID_PIPE);

	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
		vlv_detach_power_sequencer(intel_dp);
	}

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);

	intel_dp->active_pipe = crtc->pipe;

	if (!intel_dp_is_edp(intel_dp))
		return;

	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

	DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
		      pipe_name(intel_dp->pps_pipe), port_name(encoder->port));

	/* init power sequencer on this pipe and port */
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
}

static void vlv_pre_enable_dp(struct intel_encoder *encoder,
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
{
	vlv_phy_pre_encoder_enable(encoder, pipe_config);

	intel_enable_dp(encoder, pipe_config, conn_state);
}

static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
{
	intel_dp_prepare(encoder, pipe_config);

	vlv_phy_pre_pll_enable(encoder, pipe_config);
}

static void chv_pre_enable_dp(struct intel_encoder *encoder,
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
{
	chv_phy_pre_encoder_enable(encoder, pipe_config);

	intel_enable_dp(encoder, pipe_config, conn_state);

	/* Second common lane will stay alive on its own now */
	chv_phy_release_cl2_override(encoder);
}

static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
{
	intel_dp_prepare(encoder, pipe_config);

	chv_phy_pre_pll_enable(encoder, pipe_config);
}

static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
{
	chv_phy_post_pll_disable(encoder, old_crtc_state);
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
bool
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
{
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
}

/* These are source-specific values. */
u8
intel_dp_voltage_max(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;

	if (HAS_DDI(dev_priv))
		return intel_ddi_dp_voltage_max(encoder);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
	else
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
}

u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;

	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
		default:
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
		}
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		default:
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
		default:
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
		}
	}
}

static u32 vlv_signal_levels(struct intel_dp *intel_dp)
{
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	u8 train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);

	return 0;
}

static u32 chv_signal_levels(struct intel_dp *intel_dp)
{
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
	u8 train_set = intel_dp->train_set[0];

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
			deemph_reg_value = 128;
			margin_reg_value = 154;
			uniq_trans_scale = true;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);

	return 0;
}

static u32
g4x_signal_levels(u8 train_set)
{
	u32 signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

/* SNB CPU eDP voltage swing and pre-emphasis control */
static u32
snb_cpu_edp_signal_levels(u8 train_set)
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
	}
}

/* IVB CPU eDP voltage swing and pre-emphasis control */
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

void
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum port port = intel_dig_port->base.port;
	u32 signal_levels, mask = 0;
	u8 train_set = intel_dp->train_set[0];

	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
		signal_levels = bxt_signal_levels(intel_dp);
	} else if (HAS_DDI(dev_priv)) {
		signal_levels = ddi_signal_levels(intel_dp);
		mask = DDI_BUF_EMP_MASK;
	} else if (IS_CHERRYVIEW(dev_priv)) {
		signal_levels = chv_signal_levels(intel_dp);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		signal_levels = vlv_signal_levels(intel_dp);
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
		signal_levels = ivb_cpu_edp_signal_levels(train_set);
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
	} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
		signal_levels = snb_cpu_edp_signal_levels(train_set);
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
		signal_levels = g4x_signal_levels(train_set);
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

	if (mask)
		DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	DRM_DEBUG_KMS("Using vswing level %d\n",
		train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
	DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
		(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
			DP_TRAIN_PRE_EMPHASIS_SHIFT);

	intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
}

void
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
				       u8 dp_train_pat)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv =
		to_i915(intel_dig_port->base.base.dev);

	_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);

	I915_WRITE(intel_dp->output_reg, intel_dp->DP);
	POSTING_READ(intel_dp->output_reg);
}

void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum port port = intel_dig_port->base.port;
	u32 val;

	if (!HAS_DDI(dev_priv))
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

	if (intel_de_wait_for_set(dev_priv, DP_TP_STATUS(port),
				  DP_TP_STATUS_IDLE_DONE, 1))
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

static void
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
	enum port port = encoder->port;
	u32 DP = intel_dp->DP;

	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
		return;

	DRM_DEBUG_KMS("\n");

	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
	} else {
		DP &= ~DP_LINK_TRAIN_MASK;
		DP |= DP_LINK_TRAIN_PAT_IDLE;
	}
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	I915_WRITE(intel_dp->output_reg, DP);
	POSTING_READ(intel_dp->output_reg);

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

		/* always enable with pattern 1 (as per spec) */
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		DP &= ~DP_PORT_EN;
		I915_WRITE(intel_dp->output_reg, DP);
		POSTING_READ(intel_dp->output_reg);

		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
	}

	msleep(intel_dp->panel_power_down_delay);

	intel_dp->DP = DP;

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
	}
}

static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
		DRM_ERROR("DPCD failed read at extended capabilities\n");
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
		DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

	DRM_DEBUG_KMS("Base DPCD: %*ph\n",
		      (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

bool
intel_dp_read_dpcd(struct intel_dp *intel_dp)
{
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
		return false; /* aux transfer failed */

	intel_dp_extended_receiver_capabilities(intel_dp);

	DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);

	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}

bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
			DRM_ERROR("Failed to read DPCD register 0x%x\n",
				  DP_DSC_SUPPORT);

		DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
			      (int)sizeof(intel_dp->dsc_dpcd),
			      intel_dp->dsc_dpcd);

		/* FEC is supported only on DP 1.4 */
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
			DRM_ERROR("Failed to read FEC DPCD register\n");

		DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
	}
}

static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);

	/* this function is meant to be called only once */
	WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);

	if (!intel_dp_read_dpcd(intel_dp))
		return false;

	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));

	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
		DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
			      intel_dp->edp_dpcd);

	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
		int i;

		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));

		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);

			if (val == 0)
				break;

			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
			intel_dp->sink_rates[i] = (val * 200) / 10;
		}
		intel_dp->num_sink_rates = i;
	}

	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

	intel_dp_set_common_rates(intel_dp);

	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

	/*
	 * Don't clobber cached eDP rates. Also skip re-reading
	 * the OUI/ID since we know it won't change.
	 */
	if (!intel_dp_is_edp(intel_dp)) {
		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
				 drm_dp_is_branch(intel_dp->dpcd));

		intel_dp_set_sink_rates(intel_dp);
		intel_dp_set_common_rates(intel_dp);
	}

	/*
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
	 */
	if (!intel_dp_is_edp(intel_dp) &&
	    !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
		u8 count;
		ssize_t r;

		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}

	if (!drm_dp_is_branch(intel_dp->dpcd))
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
		return false; /* downstream port status fetch failed */

	return true;
}

static bool
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
{
	u8 mstm_cap;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
		return false;

	return mstm_cap & DP_MST_CAP;
}

static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

	DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
		      port_name(encoder->port), yesno(intel_dp->can_mst),
		      yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));

	if (!intel_dp->can_mst)
		return;

	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
}

static void
intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
			       const struct intel_crtc_state *crtc_state)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp vsc_sdp = {};

	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
	vsc_sdp.sdp_header.HB0 = 0;
	vsc_sdp.sdp_header.HB1 = 0x7;

	/*
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc_sdp.sdp_header.HB2 = 0x5;

	/*
	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
	 * Colorimetry Format indication (HB2 = 05h).
	 */
	vsc_sdp.sdp_header.HB3 = 0x13;

	/*
	 * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
	 * DB16[3:0] DP 1.4a spec, Table 2-120
	 */
	vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
	/* RGB->YCBCR color conversion uses the BT.709 color space. */
	vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */

	/*
	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
	 * the following Component Bit Depth values are defined:
	 * 001b = 8bpc.
	 * 010b = 10bpc.
	 * 011b = 12bpc.
	 * 100b = 16bpc.
	 */
	switch (crtc_state->pipe_bpp) {
	case 24: /* 8bpc */
		vsc_sdp.db[17] = 0x1;
		break;
	case 30: /* 10bpc */
		vsc_sdp.db[17] = 0x2;
		break;
	case 36: /* 12bpc */
		vsc_sdp.db[17] = 0x3;
		break;
	case 48: /* 16bpc */
		vsc_sdp.db[17] = 0x4;
		break;
	default:
		MISSING_CASE(crtc_state->pipe_bpp);
		break;
	}

	/*
	 * Dynamic Range (Bit 7)
	 * 0 = VESA range, 1 = CTA range.
	 * all YCbCr are always limited range
	 */
	vsc_sdp.db[17] |= 0x80;

	/*
	 * Content Type (Bits 2:0)
	 * 000b = Not defined.
	 * 001b = Graphics.
	 * 010b = Photo.
	 * 011b = Video.
	 * 100b = Game
	 * All other values are RESERVED.
	 * Note: See CTA-861-G for the definition and expected
	 * processing by a stream sink for the above contect types.
	 */
	vsc_sdp.db[18] = 0;

	intel_dig_port->write_infoframe(&intel_dig_port->base,
			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
}

void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
			       const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
		return;

	intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
}

static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
	int status = 0;
	int test_link_rate;
	u8 test_lane_count, test_link_bw;
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
		DRM_DEBUG_KMS("Lane count read failed\n");
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
		DRM_DEBUG_KMS("Link Rate read failed\n");
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
}

static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
	u8 test_pattern;
	u8 test_misc;
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
	if (status <= 0) {
		DRM_DEBUG_KMS("Test pattern read failed\n");
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("H Width read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
		DRM_DEBUG_KMS("V Height read failed\n");
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
	if (status <= 0) {
		DRM_DEBUG_KMS("TEST MISC read failed\n");
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return DP_TEST_ACK;
}

static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
{
	u8 test_result = DP_TEST_ACK;
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
	    connector->edid_corrupt ||
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
			DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
				      intel_dp->aux.i2c_nack_count,
				      intel_dp->aux.i2c_defer_count);
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
	} else {
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
			DRM_DEBUG_KMS("Failed to write EDID checksum\n");

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
	}

	/* Set test active flag here so userspace doesn't interrupt things */
	intel_dp->compliance.test_active = 1;

	return test_result;
}

static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
{
	u8 test_result = DP_TEST_NAK;
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	u8 response = DP_TEST_NAK;
	u8 request = 0;
	int status;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
	if (status <= 0) {
		DRM_DEBUG_KMS("Could not read test request from sink\n");
		goto update_status;
	}

	switch (request) {
	case DP_TEST_LINK_TRAINING:
		DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
		DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
		DRM_DEBUG_KMS("EDID test requested\n");
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
		DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
		DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
		break;
	}

	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

update_status:
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
	if (status <= 0)
		DRM_DEBUG_KMS("Could not write test response to sink\n");
}

static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
	bool bret;

	if (intel_dp->is_mst) {
		u8 esi[DP_DPRX_ESI_LEN] = { 0 };
		int ret = 0;
		int retry;
		bool handled;

		WARN_ON_ONCE(intel_dp->active_mst_links < 0);
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
		if (bret == true) {

			/* check link status - esi[10] = 0x200c */
			if (intel_dp->active_mst_links > 0 &&
			    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
				DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
				intel_dp_start_link_train(intel_dp);
				intel_dp_stop_link_train(intel_dp);
			}

			DRM_DEBUG_KMS("got esi %3ph\n", esi);
			ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);

			if (handled) {
				for (retry = 0; retry < 3; retry++) {
					int wret;
					wret = drm_dp_dpcd_write(&intel_dp->aux,
								 DP_SINK_COUNT_ESI+1,
								 &esi[1], 3);
					if (wret == 3) {
						break;
					}
				}

				bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
				if (bret == true) {
					DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
					goto go_again;
				}
			} else
				ret = 0;

			return ret;
		} else {
			DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}
	}
	return -EINVAL;
}

static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

	if (!intel_dp->link_trained)
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_connector *connector = intel_dp->attached_connector;
	struct drm_connector_state *conn_state;
	struct intel_crtc_state *crtc_state;
	struct intel_crtc *crtc;
	int ret;

	/* FIXME handle the MST connectors as well */

	if (!connector || connector->base.status != connector_status_connected)
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

	conn_state = connector->base.state;

	crtc = to_intel_crtc(conn_state->crtc);
	if (!crtc)
		return 0;

	ret = drm_modeset_lock(&crtc->base.mutex, ctx);
	if (ret)
		return ret;

	crtc_state = to_intel_crtc_state(crtc->base.state);

	WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));

	if (!crtc_state->base.active)
		return 0;

	if (conn_state->commit &&
	    !try_wait_for_completion(&conn_state->commit->hw_done))
		return 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;

	/* Suppress underruns caused by re-training */
	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
	if (crtc_state->has_pch_encoder)
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), false);

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

	/* Keep underrun reporting disabled until things are stable */
	intel_wait_for_vblank(dev_priv, crtc->pipe);

	intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
	if (crtc_state->has_pch_encoder)
		intel_set_pch_fifo_underrun_reporting(dev_priv,
						      intel_crtc_pch_transcoder(crtc), true);

	return 0;
}

/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
		 struct intel_connector *connector,
		 bool irq_received)
{
	struct drm_modeset_acquire_ctx ctx;
	enum intel_hotplug_state state;
	int ret;

	state = intel_encoder_hotplug(encoder, connector, irq_received);

	drm_modeset_acquire_init(&ctx, 0);

	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);

		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}

		break;
	}

	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
	WARN(ret, "Acquiring modeset locks failed with %i\n", ret);

	/*
	 * Keeping it consistent with intel_ddi_hotplug() and
	 * intel_hdmi_hotplug().
	 */
	if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
		state = INTEL_HOTPLUG_RETRY;

	return state;
}

static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

	if (val & DP_CP_IRQ)
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);

	if (val & DP_SINK_SPECIFIC_IRQ)
		DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
 */
static bool
intel_dp_short_pulse(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;

	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));

	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
	}

	intel_dp_check_service_irq(intel_dp);

	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;

	intel_psr_short_pulse(intel_dp);

	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
		/* Send a Hotplug Uevent to userspace to start modeset */
		drm_kms_helper_hotplug_event(&dev_priv->drm);
	}

	return true;
}

/* XXX this is probably wrong for multiple downstream ports */
static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
{
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
	u8 *dpcd = intel_dp->dpcd;
	u8 type;

	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

	if (lspcon->active)
		lspcon_resume(lspcon);

	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
	if (!drm_dp_is_branch(dpcd))
		return connector_status_connected;

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {

		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
	}

	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

	/* If no HPD, poke DDC gently */
	if (drm_probe_ddc(&intel_dp->aux.ddc))
		return connector_status_connected;

	/* Well we tried, say unknown for unreliable port types */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
	return connector_status_disconnected;
}

static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
	return connector_status_connected;
}

static bool ibx_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	u32 bit;

	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
		bit = SDE_PORTB_HOTPLUG;
		break;
	case HPD_PORT_C:
		bit = SDE_PORTC_HOTPLUG;
		break;
	case HPD_PORT_D:
		bit = SDE_PORTD_HOTPLUG;
		break;
	default:
		MISSING_CASE(encoder->hpd_pin);
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

static bool cpt_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	u32 bit;

	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
		bit = SDE_PORTB_HOTPLUG_CPT;
		break;
	case HPD_PORT_C:
		bit = SDE_PORTC_HOTPLUG_CPT;
		break;
	case HPD_PORT_D:
		bit = SDE_PORTD_HOTPLUG_CPT;
		break;
	default:
		MISSING_CASE(encoder->hpd_pin);
		return false;
	}

	return I915_READ(SDEISR) & bit;
}

static bool spt_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	u32 bit;

	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
		bit = SDE_PORTA_HOTPLUG_SPT;
		break;
	case HPD_PORT_E:
		bit = SDE_PORTE_HOTPLUG_SPT;
		break;
	default:
		return cpt_digital_port_connected(encoder);
	}

	return I915_READ(SDEISR) & bit;
}

static bool g4x_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	u32 bit;

	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
	case HPD_PORT_C:
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
	case HPD_PORT_D:
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
		MISSING_CASE(encoder->hpd_pin);
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

static bool gm45_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	u32 bit;

	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
		break;
	case HPD_PORT_C:
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
		break;
	case HPD_PORT_D:
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
		break;
	default:
		MISSING_CASE(encoder->hpd_pin);
		return false;
	}

	return I915_READ(PORT_HOTPLUG_STAT) & bit;
}

static bool ilk_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
		return ibx_digital_port_connected(encoder);
}

static bool snb_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
	else
		return cpt_digital_port_connected(encoder);
}

static bool ivb_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
		return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
	else
		return cpt_digital_port_connected(encoder);
}

static bool bdw_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (encoder->hpd_pin == HPD_PORT_A)
		return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
	else
		return cpt_digital_port_connected(encoder);
}

static bool bxt_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	u32 bit;

	switch (encoder->hpd_pin) {
	case HPD_PORT_A:
		bit = BXT_DE_PORT_HP_DDIA;
		break;
	case HPD_PORT_B:
		bit = BXT_DE_PORT_HP_DDIB;
		break;
	case HPD_PORT_C:
		bit = BXT_DE_PORT_HP_DDIC;
		break;
	default:
		MISSING_CASE(encoder->hpd_pin);
		return false;
	}

	return I915_READ(GEN8_DE_PORT_ISR) & bit;
}

static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
				     struct intel_digital_port *intel_dig_port)
{
	enum port port = intel_dig_port->base.port;

	return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}

static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
	enum phy phy = intel_port_to_phy(dev_priv, encoder->port);

	if (intel_phy_is_combo(dev_priv, phy))
		return icl_combo_port_connected(dev_priv, dig_port);
	else if (intel_phy_is_tc(dev_priv, phy))
		return intel_tc_port_connected(dig_port);
	else
		MISSING_CASE(encoder->hpd_pin);

	return false;
}

/*
 * intel_digital_port_connected - is the specified port connected?
 * @encoder: intel_encoder
 *
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
 * Return %true if port is connected, %false otherwise.
 */
static bool __intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);

	if (HAS_GMCH(dev_priv)) {
		if (IS_GM45(dev_priv))
			return gm45_digital_port_connected(encoder);
		else
			return g4x_digital_port_connected(encoder);
	}

	if (INTEL_GEN(dev_priv) >= 11)
		return icl_digital_port_connected(encoder);
	else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
		return spt_digital_port_connected(encoder);
	else if (IS_GEN9_LP(dev_priv))
		return bxt_digital_port_connected(encoder);
	else if (IS_GEN(dev_priv, 8))
		return bdw_digital_port_connected(encoder);
	else if (IS_GEN(dev_priv, 7))
		return ivb_digital_port_connected(encoder);
	else if (IS_GEN(dev_priv, 6))
		return snb_digital_port_connected(encoder);
	else if (IS_GEN(dev_priv, 5))
		return ilk_digital_port_connected(encoder);

	MISSING_CASE(INTEL_GEN(dev_priv));
	return false;
}

bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	bool is_connected = false;
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
		is_connected = __intel_digital_port_connected(encoder);

	return is_connected;
}

static struct edid *
intel_dp_get_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;

	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
			return NULL;

		return drm_edid_duplicate(intel_connector->edid);
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}

static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;

	intel_dp_unset_edid(intel_dp);
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

	intel_dp->has_audio = drm_detect_monitor_audio(edid);
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
}

static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;

	drm_dp_cec_unset_edid(&intel_dp->aux);
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;

	intel_dp->has_audio = false;
}

static int
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
{
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
	enum drm_connector_status status;

	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));

	/* Can't disconnect eDP */
	if (intel_dp_is_edp(intel_dp))
		status = edp_detect(intel_dp);
	else if (intel_digital_port_connected(encoder))
		status = intel_dp_detect_dpcd(intel_dp);
	else
		status = connector_status_disconnected;

	if (status == connector_status_disconnected) {
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

		if (intel_dp->is_mst) {
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst,
				      intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

		goto out;
	}

	if (intel_dp->reset_link_params) {
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);

		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);

		intel_dp->reset_link_params = false;
	}

	intel_dp_print_rates(intel_dp);

	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
		status = connector_status_disconnected;
		goto out;
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
		if (ret)
			return ret;
	}

	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

	intel_dp_set_edid(intel_dp);
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
		status = connector_status_connected;

	intel_dp_check_service_irq(intel_dp);

out:
	if (status != connector_status_connected && !intel_dp->is_mst)
		intel_dp_unset_edid(intel_dp);

	return status;
}

static void
intel_dp_force(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
	intel_wakeref_t wakeref;

	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
		      connector->base.id, connector->name);
	intel_dp_unset_edid(intel_dp);

	if (connector->status != connector_status_connected)
		return;

	wakeref = intel_display_power_get(dev_priv, aux_domain);

	intel_dp_set_edid(intel_dp);

	intel_display_power_put(dev_priv, aux_domain, wakeref);
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}

	/* if eDP has no EDID, fall back to fixed mode */
	if (intel_dp_is_edp(intel_attached_dp(connector)) &&
	    intel_connector->panel.fixed_mode) {
		struct drm_display_mode *mode;

		mode = drm_mode_duplicate(connector->dev,
					  intel_connector->panel.fixed_mode);
		if (mode) {
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}

	return 0;
}

static int
intel_dp_connector_register(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
	struct drm_device *dev = connector->dev;
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;

	i915_debugfs_connector_add(connector);

	DRM_DEBUG_KMS("registering %s bus for %s\n",
		      intel_dp->aux.name, connector->kdev->kobj.name);

	intel_dp->aux.dev = connector->kdev;
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
		drm_dp_cec_register_connector(&intel_dp->aux,
					      connector->name, dev->dev);
	return ret;
}

static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
	intel_connector_unregister(connector);
}

void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
{
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;

	intel_dp_mst_encoder_cleanup(intel_dig_port);
	if (intel_dp_is_edp(intel_dp)) {
		intel_wakeref_t wakeref;

		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);

		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
	}

	intel_dp_aux_fini(intel_dp);
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);

	drm_encoder_cleanup(encoder);
	kfree(enc_to_dig_port(encoder));
}

void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
	intel_wakeref_t wakeref;

	if (!intel_dp_is_edp(intel_dp))
		return;

	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
}

static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
		DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
			      dpcd_ret);
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
	intel_dp_aux_header(txbuf, &msg);

	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
	if (ret < 0) {
		DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
		return ret;
	} else if (ret == 0) {
		DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
		DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			      reply);
		return -EIO;
	}
	return 0;
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
		DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
	ssize_t ret;
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
			       bcaps, 1);
	if (ret != 1) {
		DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
	ssize_t ret;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
		DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
	ssize_t ret;
	u8 bstatus;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
			DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
				      i, ret);
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
		DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
	ssize_t ret;
	u8 bstatus;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return false;
	}

	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

struct hdcp2_dp_msg_data {
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
};

static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_SEND_RECVID_LIST,
	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_MANAGE,
	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
	  0, 0 },
};

static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
				  u8 *rx_status)
{
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
		DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
		DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
			      hdcp2_msg_data->msg_id, ret, timeout);

	return ret;
}

static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
			return &hdcp2_dp_msg_data[i];

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
			DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

	return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
					sizeof(stream_type_msg));
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
	.hdcp_capable = intel_dp_hdcp_capable,
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
};

static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
	DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));

	edp_panel_vdd_schedule_off(intel_dp);
}

static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;

	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;

	return INVALID_PIPE;
}

void intel_dp_encoder_reset(struct drm_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
	intel_wakeref_t wakeref;

	if (!HAS_DDI(dev_priv))
		intel_dp->DP = I915_READ(intel_dp->output_reg);

	if (lspcon->active)
		lspcon_resume(lspcon);

	intel_dp->reset_link_params = true;

	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);

		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
	}
}

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.force = intel_dp_force,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
	.late_register = intel_dp_connector_register,
	.early_unregister = intel_dp_connector_unregister,
	.destroy = intel_connector_destroy,
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.detect_ctx = intel_dp_detect,
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
	.atomic_check = intel_digital_connector_atomic_check,
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.reset = intel_dp_encoder_reset,
	.destroy = intel_dp_encoder_destroy,
};

enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;

	if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
		/*
		 * vdd off can generate a long pulse on eDP which
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
		 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
		 */
		DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
			      port_name(intel_dig_port->base.port));
		return IRQ_HANDLED;
	}

	DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
		      port_name(intel_dig_port->base.port),
		      long_hpd ? "long" : "short");

	if (long_hpd) {
		intel_dp->reset_link_params = true;
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
		if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
			DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
				      intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);

			return IRQ_NONE;
		}
	}

	if (!intel_dp->is_mst) {
		bool handled;

		handled = intel_dp_short_pulse(intel_dp);

		if (!handled)
			return IRQ_NONE;
	}

	return IRQ_HANDLED;
}

/* check the VBT to see whether the eDP is on another port */
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
{
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
	if (INTEL_GEN(dev_priv) < 5)
		return false;

	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
		return true;

	return intel_bios_is_port_edp(dev_priv, port);
}

static void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);

	intel_attach_broadcast_rgb_property(connector);
	if (HAS_GMCH(dev_priv))
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);

	if (intel_dp_is_edp(intel_dp)) {
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
		if (!HAS_GMCH(dev_priv))
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;

	}
}

static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
	intel_dp->panel_power_off_time = ktime_get_boottime();
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

static void
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u32 pp_on, pp_off, pp_ctl;
	struct pps_registers regs;

	intel_pps_get_registers(intel_dp, &regs);

	pp_ctl = ironlake_get_pp_control(intel_dp);

	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
		I915_WRITE(regs.pp_ctrl, pp_ctl);

	pp_on = I915_READ(regs.pp_on);
	pp_off = I915_READ(regs.pp_off);

	/* Pull timing values out of registers */
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);

	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

		pp_div = I915_READ(regs.pp_div);

		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
	} else {
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
	}
}

static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
intel_pps_verify_state(struct intel_dp *intel_dp)
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

	intel_pps_readout_hw_state(intel_dp, &hw);

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

static void
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

	intel_pps_readout_hw_state(intel_dp, &cur);

	intel_pps_dump_state("cur", &cur);

	vbt = dev_priv->vbt.edp.pps;
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
		DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
			      vbt.t11_t12);
	}
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

	intel_pps_dump_state("vbt", &vbt);

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
}

static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
					      bool force_disable_vdd)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u32 pp_on, pp_off, port_sel = 0;
	int div = dev_priv->rawclk_freq / 1000;
	struct pps_registers regs;
	enum port port = dp_to_dig_port(intel_dp)->base.port;
	const struct edp_power_seq *seq = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	intel_pps_get_registers(intel_dp, &regs);

	/*
	 * On some VLV machines the BIOS can leave the VDD
	 * enabled even on power sequencers which aren't
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
	 * soon as the new power sequencer gets initialized.
	 */
	if (force_disable_vdd) {
		u32 pp = ironlake_get_pp_control(intel_dp);

		WARN(pp & PANEL_POWER_ON, "Panel power already on\n");

		if (pp & EDP_FORCE_VDD)
			DRM_DEBUG_KMS("VDD already on, disabling first\n");

		pp &= ~EDP_FORCE_VDD;

		I915_WRITE(regs.pp_ctrl, pp);
	}

	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		port_sel = PANEL_PORT_SELECT_VLV(port);
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
		switch (port) {
		case PORT_A:
			port_sel = PANEL_PORT_SELECT_DPA;
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
			port_sel = PANEL_PORT_SELECT_DPD;
			break;
		default:
			MISSING_CASE(port);
			break;
		}
	}

	pp_on |= port_sel;

	I915_WRITE(regs.pp_on, pp_on);
	I915_WRITE(regs.pp_off, pp_off);

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
		I915_WRITE(regs.pp_div,
			   REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
			   REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
	} else {
		u32 pp_ctl;

		pp_ctl = I915_READ(regs.pp_ctrl);
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
		I915_WRITE(regs.pp_ctrl, pp_ctl);
	}

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
		      I915_READ(regs.pp_on),
		      I915_READ(regs.pp_off),
		      i915_mmio_reg_valid(regs.pp_div) ?
		      I915_READ(regs.pp_div) :
		      (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
}

static void intel_dp_pps_init(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
	}
}

/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
 * @dev_priv: i915 device
 * @crtc_state: a pointer to the active intel_crtc_state
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
				    const struct intel_crtc_state *crtc_state,
				    int refresh_rate)
{
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

	if (intel_dp == NULL) {
		DRM_DEBUG_KMS("DRRS not supported.\n");
		return;
	}

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
		index = DRRS_LOW_RR;

	if (index == dev_priv->drrs.refresh_rate_type) {
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

	if (!crtc_state->base.active) {
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
		switch (index) {
		case DRRS_HIGH_RR:
			intel_dp_set_m_n(crtc_state, M1_N1);
			break;
		case DRRS_LOW_RR:
			intel_dp_set_m_n(crtc_state, M2_N2);
			break;
		case DRRS_MAX_RR:
		default:
			DRM_ERROR("Unsupported refreshrate type\n");
		}
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
		u32 val;

		val = I915_READ(reg);
		if (index > DRRS_HIGH_RR) {
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
		} else {
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
		}
		I915_WRITE(reg, val);
	}

	dev_priv->drrs.refresh_rate_type = index;

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
 * @crtc_state: A pointer to the active crtc state.
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
			   const struct intel_crtc_state *crtc_state)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	if (!crtc_state->has_drrs) {
		DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
		return;
	}

	if (dev_priv->psr.enabled) {
		DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
		return;
	}

	mutex_lock(&dev_priv->drrs.mutex);
	if (dev_priv->drrs.dp) {
		DRM_DEBUG_KMS("DRRS already enabled\n");
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
 * @old_crtc_state: Pointer to old crtc_state.
 *
 */
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
			    const struct intel_crtc_state *old_crtc_state)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	if (!old_crtc_state->has_drrs)
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

	/*