summaryrefslogtreecommitdiffstats
path: root/sound/soc/fsl
diff options
context:
space:
mode:
Diffstat (limited to 'sound/soc/fsl')
-rw-r--r--sound/soc/fsl/Kconfig17
-rw-r--r--sound/soc/fsl/Makefile7
-rw-r--r--sound/soc/fsl/fsl_dma.c181
-rw-r--r--sound/soc/fsl/fsl_ssi.c98
-rw-r--r--sound/soc/fsl/fsl_ssi.h2
-rw-r--r--sound/soc/fsl/mpc5200_psc_i2s.c20
-rw-r--r--sound/soc/fsl/mpc8610_hpcd.c5
7 files changed, 182 insertions, 148 deletions
diff --git a/sound/soc/fsl/Kconfig b/sound/soc/fsl/Kconfig
index 95c12b26fe37..9fc908283371 100644
--- a/sound/soc/fsl/Kconfig
+++ b/sound/soc/fsl/Kconfig
@@ -1,17 +1,18 @@
1config SND_SOC_OF_SIMPLE 1config SND_SOC_OF_SIMPLE
2 tristate 2 tristate
3 3
4# ASoC platform support for the Freescale MPC8610 SOC. This compiles drivers
5# for the SSI and the Elo DMA controller. You will still need to select
6# a platform driver and a codec driver.
4config SND_SOC_MPC8610 7config SND_SOC_MPC8610
5 bool "ALSA SoC support for the MPC8610 SOC" 8 tristate
6 depends on MPC8610_HPCD 9 depends on MPC8610
7 default y if MPC8610
8 help
9 Say Y if you want to add support for codecs attached to the SSI
10 device on an MPC8610.
11 10
12config SND_SOC_MPC8610_HPCD 11config SND_SOC_MPC8610_HPCD
13 bool "ALSA SoC support for the Freescale MPC8610 HPCD board" 12 tristate "ALSA SoC support for the Freescale MPC8610 HPCD board"
14 depends on SND_SOC_MPC8610 13 # I2C is necessary for the CS4270 driver
14 depends on MPC8610_HPCD && I2C
15 select SND_SOC_MPC8610
15 select SND_SOC_CS4270 16 select SND_SOC_CS4270
16 select SND_SOC_CS4270_VD33_ERRATA 17 select SND_SOC_CS4270_VD33_ERRATA
17 default y if MPC8610_HPCD 18 default y if MPC8610_HPCD
diff --git a/sound/soc/fsl/Makefile b/sound/soc/fsl/Makefile
index 035da4afec34..f85134c86387 100644
--- a/sound/soc/fsl/Makefile
+++ b/sound/soc/fsl/Makefile
@@ -2,10 +2,13 @@
2obj-$(CONFIG_SND_SOC_OF_SIMPLE) += soc-of-simple.o 2obj-$(CONFIG_SND_SOC_OF_SIMPLE) += soc-of-simple.o
3 3
4# MPC8610 HPCD Machine Support 4# MPC8610 HPCD Machine Support
5obj-$(CONFIG_SND_SOC_MPC8610_HPCD) += mpc8610_hpcd.o 5snd-soc-mpc8610-hpcd-objs := mpc8610_hpcd.o
6obj-$(CONFIG_SND_SOC_MPC8610_HPCD) += snd-soc-mpc8610-hpcd.o
6 7
7# MPC8610 Platform Support 8# MPC8610 Platform Support
8obj-$(CONFIG_SND_SOC_MPC8610) += fsl_ssi.o fsl_dma.o 9snd-soc-fsl-ssi-objs := fsl_ssi.o
10snd-soc-fsl-dma-objs := fsl_dma.o
11obj-$(CONFIG_SND_SOC_MPC8610) += snd-soc-fsl-ssi.o snd-soc-fsl-dma.o
9 12
10obj-$(CONFIG_SND_SOC_MPC5200_I2S) += mpc5200_psc_i2s.o 13obj-$(CONFIG_SND_SOC_MPC5200_I2S) += mpc5200_psc_i2s.o
11 14
diff --git a/sound/soc/fsl/fsl_dma.c b/sound/soc/fsl/fsl_dma.c
index 64993eda5679..b3eb8570cd7b 100644
--- a/sound/soc/fsl/fsl_dma.c
+++ b/sound/soc/fsl/fsl_dma.c
@@ -142,7 +142,8 @@ static const struct snd_pcm_hardware fsl_dma_hardware = {
142 .info = SNDRV_PCM_INFO_INTERLEAVED | 142 .info = SNDRV_PCM_INFO_INTERLEAVED |
143 SNDRV_PCM_INFO_MMAP | 143 SNDRV_PCM_INFO_MMAP |
144 SNDRV_PCM_INFO_MMAP_VALID | 144 SNDRV_PCM_INFO_MMAP_VALID |
145 SNDRV_PCM_INFO_JOINT_DUPLEX, 145 SNDRV_PCM_INFO_JOINT_DUPLEX |
146 SNDRV_PCM_INFO_PAUSE,
146 .formats = FSLDMA_PCM_FORMATS, 147 .formats = FSLDMA_PCM_FORMATS,
147 .rates = FSLDMA_PCM_RATES, 148 .rates = FSLDMA_PCM_RATES,
148 .rate_min = 5512, 149 .rate_min = 5512,
@@ -464,11 +465,7 @@ static int fsl_dma_open(struct snd_pcm_substream *substream)
464 sizeof(struct fsl_dma_link_descriptor); 465 sizeof(struct fsl_dma_link_descriptor);
465 466
466 for (i = 0; i < NUM_DMA_LINKS; i++) { 467 for (i = 0; i < NUM_DMA_LINKS; i++) {
467 struct fsl_dma_link_descriptor *link = &dma_private->link[i]; 468 dma_private->link[i].next = cpu_to_be64(temp_link);
468
469 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
470 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
471 link->next = cpu_to_be64(temp_link);
472 469
473 temp_link += sizeof(struct fsl_dma_link_descriptor); 470 temp_link += sizeof(struct fsl_dma_link_descriptor);
474 } 471 }
@@ -525,79 +522,9 @@ static int fsl_dma_open(struct snd_pcm_substream *substream)
525 * This function obtains hardware parameters about the opened stream and 522 * This function obtains hardware parameters about the opened stream and
526 * programs the DMA controller accordingly. 523 * programs the DMA controller accordingly.
527 * 524 *
528 * Note that due to a quirk of the SSI's STX register, the target address 525 * One drawback of big-endian is that when copying integers of different
529 * for the DMA operations depends on the sample size. So we don't program 526 * sizes to a fixed-sized register, the address to which the integer must be
530 * the dest_addr (for playback -- source_addr for capture) fields in the 527 * copied is dependent on the size of the integer.
531 * link descriptors here. We do that in fsl_dma_prepare()
532 */
533static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
534 struct snd_pcm_hw_params *hw_params)
535{
536 struct snd_pcm_runtime *runtime = substream->runtime;
537 struct fsl_dma_private *dma_private = runtime->private_data;
538
539 dma_addr_t temp_addr; /* Pointer to next period */
540
541 unsigned int i;
542
543 /* Get all the parameters we need */
544 size_t buffer_size = params_buffer_bytes(hw_params);
545 size_t period_size = params_period_bytes(hw_params);
546
547 /* Initialize our DMA tracking variables */
548 dma_private->period_size = period_size;
549 dma_private->num_periods = params_periods(hw_params);
550 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
551 dma_private->dma_buf_next = dma_private->dma_buf_phys +
552 (NUM_DMA_LINKS * period_size);
553 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
554 dma_private->dma_buf_next = dma_private->dma_buf_phys;
555
556 /*
557 * The actual address in STX0 (destination for playback, source for
558 * capture) is based on the sample size, but we don't know the sample
559 * size in this function, so we'll have to adjust that later. See
560 * comments in fsl_dma_prepare().
561 *
562 * The DMA controller does not have a cache, so the CPU does not
563 * need to tell it to flush its cache. However, the DMA
564 * controller does need to tell the CPU to flush its cache.
565 * That's what the SNOOP bit does.
566 *
567 * Also, even though the DMA controller supports 36-bit addressing, for
568 * simplicity we currently support only 32-bit addresses for the audio
569 * buffer itself.
570 */
571 temp_addr = substream->dma_buffer.addr;
572
573 for (i = 0; i < NUM_DMA_LINKS; i++) {
574 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
575
576 link->count = cpu_to_be32(period_size);
577
578 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
579 link->source_addr = cpu_to_be32(temp_addr);
580 else
581 link->dest_addr = cpu_to_be32(temp_addr);
582
583 temp_addr += period_size;
584 }
585
586 return 0;
587}
588
589/**
590 * fsl_dma_prepare - prepare the DMA registers for playback.
591 *
592 * This function is called after the specifics of the audio data are known,
593 * i.e. snd_pcm_runtime is initialized.
594 *
595 * In this function, we finish programming the registers of the DMA
596 * controller that are dependent on the sample size.
597 *
598 * One of the drawbacks with big-endian is that when copying integers of
599 * different sizes to a fixed-sized register, the address to which the
600 * integer must be copied is dependent on the size of the integer.
601 * 528 *
602 * For example, if P is the address of a 32-bit register, and X is a 32-bit 529 * For example, if P is the address of a 32-bit register, and X is a 32-bit
603 * integer, then X should be copied to address P. However, if X is a 16-bit 530 * integer, then X should be copied to address P. However, if X is a 16-bit
@@ -613,22 +540,58 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
613 * and 8 bytes at a time). So we do not support packed 24-bit samples. 540 * and 8 bytes at a time). So we do not support packed 24-bit samples.
614 * 24-bit data must be padded to 32 bits. 541 * 24-bit data must be padded to 32 bits.
615 */ 542 */
616static int fsl_dma_prepare(struct snd_pcm_substream *substream) 543static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
544 struct snd_pcm_hw_params *hw_params)
617{ 545{
618 struct snd_pcm_runtime *runtime = substream->runtime; 546 struct snd_pcm_runtime *runtime = substream->runtime;
619 struct fsl_dma_private *dma_private = runtime->private_data; 547 struct fsl_dma_private *dma_private = runtime->private_data;
548
549 /* Number of bits per sample */
550 unsigned int sample_size =
551 snd_pcm_format_physical_width(params_format(hw_params));
552
553 /* Number of bytes per frame */
554 unsigned int frame_size = 2 * (sample_size / 8);
555
556 /* Bus address of SSI STX register */
557 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
558
559 /* Size of the DMA buffer, in bytes */
560 size_t buffer_size = params_buffer_bytes(hw_params);
561
562 /* Number of bytes per period */
563 size_t period_size = params_period_bytes(hw_params);
564
565 /* Pointer to next period */
566 dma_addr_t temp_addr = substream->dma_buffer.addr;
567
568 /* Pointer to DMA controller */
620 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel; 569 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
621 u32 mr; 570
571 u32 mr; /* DMA Mode Register */
572
622 unsigned int i; 573 unsigned int i;
623 dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
624 unsigned int frame_size; /* Number of bytes per frame */
625 574
626 ssi_sxx_phys = dma_private->ssi_sxx_phys; 575 /* Initialize our DMA tracking variables */
576 dma_private->period_size = period_size;
577 dma_private->num_periods = params_periods(hw_params);
578 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
579 dma_private->dma_buf_next = dma_private->dma_buf_phys +
580 (NUM_DMA_LINKS * period_size);
581
582 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
583 /* This happens if the number of periods == NUM_DMA_LINKS */
584 dma_private->dma_buf_next = dma_private->dma_buf_phys;
627 585
628 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK | 586 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
629 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK); 587 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
630 588
631 switch (runtime->sample_bits) { 589 /* Due to a quirk of the SSI's STX register, the target address
590 * for the DMA operations depends on the sample size. So we calculate
591 * that offset here. While we're at it, also tell the DMA controller
592 * how much data to transfer per sample.
593 */
594 switch (sample_size) {
632 case 8: 595 case 8:
633 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1; 596 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
634 ssi_sxx_phys += 3; 597 ssi_sxx_phys += 3;
@@ -641,12 +604,12 @@ static int fsl_dma_prepare(struct snd_pcm_substream *substream)
641 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4; 604 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
642 break; 605 break;
643 default: 606 default:
607 /* We should never get here */
644 dev_err(substream->pcm->card->dev, 608 dev_err(substream->pcm->card->dev,
645 "unsupported sample size %u\n", runtime->sample_bits); 609 "unsupported sample size %u\n", sample_size);
646 return -EINVAL; 610 return -EINVAL;
647 } 611 }
648 612
649 frame_size = runtime->frame_bits / 8;
650 /* 613 /*
651 * BWC should always be a multiple of the frame size. BWC determines 614 * BWC should always be a multiple of the frame size. BWC determines
652 * how many bytes are sent/received before the DMA controller checks the 615 * how many bytes are sent/received before the DMA controller checks the
@@ -655,7 +618,6 @@ static int fsl_dma_prepare(struct snd_pcm_substream *substream)
655 * capture, the receive FIFO is triggered when it contains one frame, so 618 * capture, the receive FIFO is triggered when it contains one frame, so
656 * we want to receive one frame at a time. 619 * we want to receive one frame at a time.
657 */ 620 */
658
659 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 621 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
660 mr |= CCSR_DMA_MR_BWC(2 * frame_size); 622 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
661 else 623 else
@@ -663,16 +625,48 @@ static int fsl_dma_prepare(struct snd_pcm_substream *substream)
663 625
664 out_be32(&dma_channel->mr, mr); 626 out_be32(&dma_channel->mr, mr);
665 627
666 /*
667 * Program the address of the DMA transfer to/from the SSI.
668 */
669 for (i = 0; i < NUM_DMA_LINKS; i++) { 628 for (i = 0; i < NUM_DMA_LINKS; i++) {
670 struct fsl_dma_link_descriptor *link = &dma_private->link[i]; 629 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
671 630
672 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 631 link->count = cpu_to_be32(period_size);
632
633 /* Even though the DMA controller supports 36-bit addressing,
634 * for simplicity we allow only 32-bit addresses for the audio
635 * buffer itself. This was enforced in fsl_dma_new() with the
636 * DMA mask.
637 *
638 * The snoop bit tells the DMA controller whether it should tell
639 * the ECM to snoop during a read or write to an address. For
640 * audio, we use DMA to transfer data between memory and an I/O
641 * device (the SSI's STX0 or SRX0 register). Snooping is only
642 * needed if there is a cache, so we need to snoop memory
643 * addresses only. For playback, that means we snoop the source
644 * but not the destination. For capture, we snoop the
645 * destination but not the source.
646 *
647 * Note that failing to snoop properly is unlikely to cause
648 * cache incoherency if the period size is larger than the
649 * size of L1 cache. This is because filling in one period will
650 * flush out the data for the previous period. So if you
651 * increased period_bytes_min to a large enough size, you might
652 * get more performance by not snooping, and you'll still be
653 * okay.
654 */
655 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
656 link->source_addr = cpu_to_be32(temp_addr);
657 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
658
673 link->dest_addr = cpu_to_be32(ssi_sxx_phys); 659 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
674 else 660 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
661 } else {
675 link->source_addr = cpu_to_be32(ssi_sxx_phys); 662 link->source_addr = cpu_to_be32(ssi_sxx_phys);
663 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
664
665 link->dest_addr = cpu_to_be32(temp_addr);
666 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
667 }
668
669 temp_addr += period_size;
676 } 670 }
677 671
678 return 0; 672 return 0;
@@ -808,7 +802,6 @@ static struct snd_pcm_ops fsl_dma_ops = {
808 .ioctl = snd_pcm_lib_ioctl, 802 .ioctl = snd_pcm_lib_ioctl,
809 .hw_params = fsl_dma_hw_params, 803 .hw_params = fsl_dma_hw_params,
810 .hw_free = fsl_dma_hw_free, 804 .hw_free = fsl_dma_hw_free,
811 .prepare = fsl_dma_prepare,
812 .pointer = fsl_dma_pointer, 805 .pointer = fsl_dma_pointer,
813}; 806};
814 807
diff --git a/sound/soc/fsl/fsl_ssi.c b/sound/soc/fsl/fsl_ssi.c
index c6d6eb71dc1d..169bca295b78 100644
--- a/sound/soc/fsl/fsl_ssi.c
+++ b/sound/soc/fsl/fsl_ssi.c
@@ -72,6 +72,7 @@
72 * @dev: struct device pointer 72 * @dev: struct device pointer
73 * @playback: the number of playback streams opened 73 * @playback: the number of playback streams opened
74 * @capture: the number of capture streams opened 74 * @capture: the number of capture streams opened
75 * @asynchronous: 0=synchronous mode, 1=asynchronous mode
75 * @cpu_dai: the CPU DAI for this device 76 * @cpu_dai: the CPU DAI for this device
76 * @dev_attr: the sysfs device attribute structure 77 * @dev_attr: the sysfs device attribute structure
77 * @stats: SSI statistics 78 * @stats: SSI statistics
@@ -86,6 +87,7 @@ struct fsl_ssi_private {
86 struct device *dev; 87 struct device *dev;
87 unsigned int playback; 88 unsigned int playback;
88 unsigned int capture; 89 unsigned int capture;
90 int asynchronous;
89 struct snd_soc_dai cpu_dai; 91 struct snd_soc_dai cpu_dai;
90 struct device_attribute dev_attr; 92 struct device_attribute dev_attr;
91 93
@@ -301,9 +303,10 @@ static int fsl_ssi_startup(struct snd_pcm_substream *substream,
301 * 303 *
302 * FIXME: Little-endian samples require a different shift dir 304 * FIXME: Little-endian samples require a different shift dir
303 */ 305 */
304 clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK, 306 clrsetbits_be32(&ssi->scr,
305 CCSR_SSI_SCR_TFR_CLK_DIS | 307 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
306 CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN); 308 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
309 | (ssi_private->asynchronous ? 0 : CCSR_SSI_SCR_SYN));
307 310
308 out_be32(&ssi->stcr, 311 out_be32(&ssi->stcr,
309 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 | 312 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
@@ -382,10 +385,15 @@ static int fsl_ssi_startup(struct snd_pcm_substream *substream,
382 SNDRV_PCM_HW_PARAM_RATE, 385 SNDRV_PCM_HW_PARAM_RATE,
383 first_runtime->rate, first_runtime->rate); 386 first_runtime->rate, first_runtime->rate);
384 387
385 snd_pcm_hw_constraint_minmax(substream->runtime, 388 /* If we're in synchronous mode, then we need to constrain
386 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, 389 * the sample size as well. We don't support independent sample
387 first_runtime->sample_bits, 390 * rates in asynchronous mode.
388 first_runtime->sample_bits); 391 */
392 if (!ssi_private->asynchronous)
393 snd_pcm_hw_constraint_minmax(substream->runtime,
394 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
395 first_runtime->sample_bits,
396 first_runtime->sample_bits);
389 397
390 ssi_private->second_stream = substream; 398 ssi_private->second_stream = substream;
391 } 399 }
@@ -400,7 +408,7 @@ static int fsl_ssi_startup(struct snd_pcm_substream *substream,
400} 408}
401 409
402/** 410/**
403 * fsl_ssi_prepare: prepare the SSI. 411 * fsl_ssi_hw_params - program the sample size
404 * 412 *
405 * Most of the SSI registers have been programmed in the startup function, 413 * Most of the SSI registers have been programmed in the startup function,
406 * but the word length must be programmed here. Unfortunately, programming 414 * but the word length must be programmed here. Unfortunately, programming
@@ -412,23 +420,27 @@ static int fsl_ssi_startup(struct snd_pcm_substream *substream,
412 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the 420 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
413 * clock master. 421 * clock master.
414 */ 422 */
415static int fsl_ssi_prepare(struct snd_pcm_substream *substream, 423static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
416 struct snd_soc_dai *dai) 424 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
417{ 425{
418 struct snd_pcm_runtime *runtime = substream->runtime; 426 struct fsl_ssi_private *ssi_private = cpu_dai->private_data;
419 struct snd_soc_pcm_runtime *rtd = substream->private_data;
420 struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
421
422 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
423 427
424 if (substream == ssi_private->first_stream) { 428 if (substream == ssi_private->first_stream) {
425 u32 wl; 429 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
430 unsigned int sample_size =
431 snd_pcm_format_width(params_format(hw_params));
432 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
426 433
427 /* The SSI should always be disabled at this points (SSIEN=0) */ 434 /* The SSI should always be disabled at this points (SSIEN=0) */
428 wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format));
429 435
430 /* In synchronous mode, the SSI uses STCCR for capture */ 436 /* In synchronous mode, the SSI uses STCCR for capture */
431 clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl); 437 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
438 !ssi_private->asynchronous)
439 clrsetbits_be32(&ssi->stccr,
440 CCSR_SSI_SxCCR_WL_MASK, wl);
441 else
442 clrsetbits_be32(&ssi->srccr,
443 CCSR_SSI_SxCCR_WL_MASK, wl);
432 } 444 }
433 445
434 return 0; 446 return 0;
@@ -452,28 +464,33 @@ static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
452 464
453 switch (cmd) { 465 switch (cmd) {
454 case SNDRV_PCM_TRIGGER_START: 466 case SNDRV_PCM_TRIGGER_START:
455 case SNDRV_PCM_TRIGGER_RESUME: 467 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
456 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 468 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
457 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 469 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
458 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
459 setbits32(&ssi->scr, 470 setbits32(&ssi->scr,
460 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE); 471 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
461 } else { 472 } else {
462 clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN); 473 long timeout = jiffies + 10;
474
463 setbits32(&ssi->scr, 475 setbits32(&ssi->scr,
464 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE); 476 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
465 477
466 /* 478 /* Wait until the SSI has filled its FIFO. Without this
467 * I think we need this delay to allow time for the SSI 479 * delay, ALSA complains about overruns. When the FIFO
468 * to put data into its FIFO. Without it, ALSA starts 480 * is full, the DMA controller initiates its first
469 * to complain about overruns. 481 * transfer. Until then, however, the DMA's DAR
482 * register is zero, which translates to an
483 * out-of-bounds pointer. This makes ALSA think an
484 * overrun has occurred.
470 */ 485 */
471 mdelay(1); 486 while (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0) &&
487 (jiffies < timeout));
488 if (!(in_be32(&ssi->sisr) & CCSR_SSI_SISR_RFF0))
489 return -EIO;
472 } 490 }
473 break; 491 break;
474 492
475 case SNDRV_PCM_TRIGGER_STOP: 493 case SNDRV_PCM_TRIGGER_STOP:
476 case SNDRV_PCM_TRIGGER_SUSPEND:
477 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 494 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
478 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 495 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
479 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE); 496 clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
@@ -563,6 +580,15 @@ static int fsl_ssi_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
563/** 580/**
564 * fsl_ssi_dai_template: template CPU DAI for the SSI 581 * fsl_ssi_dai_template: template CPU DAI for the SSI
565 */ 582 */
583static struct snd_soc_dai_ops fsl_ssi_dai_ops = {
584 .startup = fsl_ssi_startup,
585 .hw_params = fsl_ssi_hw_params,
586 .shutdown = fsl_ssi_shutdown,
587 .trigger = fsl_ssi_trigger,
588 .set_sysclk = fsl_ssi_set_sysclk,
589 .set_fmt = fsl_ssi_set_fmt,
590};
591
566static struct snd_soc_dai fsl_ssi_dai_template = { 592static struct snd_soc_dai fsl_ssi_dai_template = {
567 .playback = { 593 .playback = {
568 /* The SSI does not support monaural audio. */ 594 /* The SSI does not support monaural audio. */
@@ -577,14 +603,7 @@ static struct snd_soc_dai fsl_ssi_dai_template = {
577 .rates = FSLSSI_I2S_RATES, 603 .rates = FSLSSI_I2S_RATES,
578 .formats = FSLSSI_I2S_FORMATS, 604 .formats = FSLSSI_I2S_FORMATS,
579 }, 605 },
580 .ops = { 606 .ops = &fsl_ssi_dai_ops,
581 .startup = fsl_ssi_startup,
582 .prepare = fsl_ssi_prepare,
583 .shutdown = fsl_ssi_shutdown,
584 .trigger = fsl_ssi_trigger,
585 .set_sysclk = fsl_ssi_set_sysclk,
586 .set_fmt = fsl_ssi_set_fmt,
587 },
588}; 607};
589 608
590/** 609/**
@@ -654,6 +673,7 @@ struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
654 ssi_private->ssi_phys = ssi_info->ssi_phys; 673 ssi_private->ssi_phys = ssi_info->ssi_phys;
655 ssi_private->irq = ssi_info->irq; 674 ssi_private->irq = ssi_info->irq;
656 ssi_private->dev = ssi_info->dev; 675 ssi_private->dev = ssi_info->dev;
676 ssi_private->asynchronous = ssi_info->asynchronous;
657 677
658 ssi_private->dev->driver_data = fsl_ssi_dai; 678 ssi_private->dev->driver_data = fsl_ssi_dai;
659 679
@@ -704,6 +724,14 @@ void fsl_ssi_destroy_dai(struct snd_soc_dai *fsl_ssi_dai)
704} 724}
705EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai); 725EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
706 726
727static int __init fsl_ssi_init(void)
728{
729 printk(KERN_INFO "Freescale Synchronous Serial Interface (SSI) ASoC Driver\n");
730
731 return 0;
732}
733module_init(fsl_ssi_init);
734
707MODULE_AUTHOR("Timur Tabi <timur@freescale.com>"); 735MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
708MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver"); 736MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
709MODULE_LICENSE("GPL"); 737MODULE_LICENSE("GPL");
diff --git a/sound/soc/fsl/fsl_ssi.h b/sound/soc/fsl/fsl_ssi.h
index 83b44d700e33..eade01feaab6 100644
--- a/sound/soc/fsl/fsl_ssi.h
+++ b/sound/soc/fsl/fsl_ssi.h
@@ -208,6 +208,7 @@ struct ccsr_ssi {
208 * ssi_phys: physical address of the SSI registers 208 * ssi_phys: physical address of the SSI registers
209 * irq: IRQ of this SSI 209 * irq: IRQ of this SSI
210 * dev: struct device, used to create the sysfs statistics file 210 * dev: struct device, used to create the sysfs statistics file
211 * asynchronous: 0=synchronous mode, 1=asynchronous mode
211*/ 212*/
212struct fsl_ssi_info { 213struct fsl_ssi_info {
213 unsigned int id; 214 unsigned int id;
@@ -215,6 +216,7 @@ struct fsl_ssi_info {
215 dma_addr_t ssi_phys; 216 dma_addr_t ssi_phys;
216 unsigned int irq; 217 unsigned int irq;
217 struct device *dev; 218 struct device *dev;
219 int asynchronous;
218}; 220};
219 221
220struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info); 222struct snd_soc_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info);
diff --git a/sound/soc/fsl/mpc5200_psc_i2s.c b/sound/soc/fsl/mpc5200_psc_i2s.c
index 9eb1ce185bd0..3aa729df27b5 100644
--- a/sound/soc/fsl/mpc5200_psc_i2s.c
+++ b/sound/soc/fsl/mpc5200_psc_i2s.c
@@ -468,6 +468,16 @@ static int psc_i2s_set_fmt(struct snd_soc_dai *cpu_dai, unsigned int format)
468/** 468/**
469 * psc_i2s_dai_template: template CPU Digital Audio Interface 469 * psc_i2s_dai_template: template CPU Digital Audio Interface
470 */ 470 */
471static struct snd_soc_dai_ops psc_i2s_dai_ops = {
472 .startup = psc_i2s_startup,
473 .hw_params = psc_i2s_hw_params,
474 .hw_free = psc_i2s_hw_free,
475 .shutdown = psc_i2s_shutdown,
476 .trigger = psc_i2s_trigger,
477 .set_sysclk = psc_i2s_set_sysclk,
478 .set_fmt = psc_i2s_set_fmt,
479};
480
471static struct snd_soc_dai psc_i2s_dai_template = { 481static struct snd_soc_dai psc_i2s_dai_template = {
472 .playback = { 482 .playback = {
473 .channels_min = 2, 483 .channels_min = 2,
@@ -481,15 +491,7 @@ static struct snd_soc_dai psc_i2s_dai_template = {
481 .rates = PSC_I2S_RATES, 491 .rates = PSC_I2S_RATES,
482 .formats = PSC_I2S_FORMATS, 492 .formats = PSC_I2S_FORMATS,
483 }, 493 },
484 .ops = { 494 .ops = &psc_i2s_dai_ops,
485 .startup = psc_i2s_startup,
486 .hw_params = psc_i2s_hw_params,
487 .hw_free = psc_i2s_hw_free,
488 .shutdown = psc_i2s_shutdown,
489 .trigger = psc_i2s_trigger,
490 .set_sysclk = psc_i2s_set_sysclk,
491 .set_fmt = psc_i2s_set_fmt,
492 },
493}; 495};
494 496
495/* --------------------------------------------------------------------- 497/* ---------------------------------------------------------------------
diff --git a/sound/soc/fsl/mpc8610_hpcd.c b/sound/soc/fsl/mpc8610_hpcd.c
index acf39a646b2f..ef67d1cdffe7 100644
--- a/sound/soc/fsl/mpc8610_hpcd.c
+++ b/sound/soc/fsl/mpc8610_hpcd.c
@@ -353,6 +353,11 @@ static int mpc8610_hpcd_probe(struct of_device *ofdev,
353 } 353 }
354 ssi_info.irq = machine_data->ssi_irq; 354 ssi_info.irq = machine_data->ssi_irq;
355 355
356 /* Do we want to use asynchronous mode? */
357 ssi_info.asynchronous =
358 of_find_property(np, "fsl,ssi-asynchronous", NULL) ? 1 : 0;
359 if (ssi_info.asynchronous)
360 dev_info(&ofdev->dev, "using asynchronous mode\n");
356 361
357 /* Map the global utilities registers. */ 362 /* Map the global utilities registers. */
358 guts_np = of_find_compatible_node(NULL, NULL, "fsl,mpc8610-guts"); 363 guts_np = of_find_compatible_node(NULL, NULL, "fsl,mpc8610-guts");