summaryrefslogtreecommitdiffstats
path: root/mm/kasan/common.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/kasan/common.c')
-rw-r--r--mm/kasan/common.c697
1 files changed, 697 insertions, 0 deletions
diff --git a/mm/kasan/common.c b/mm/kasan/common.c
new file mode 100644
index 000000000000..03d5d1374ca7
--- /dev/null
+++ b/mm/kasan/common.c
@@ -0,0 +1,697 @@
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file contains common generic and tag-based KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16
17#include <linux/export.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/kasan.h>
21#include <linux/kernel.h>
22#include <linux/kmemleak.h>
23#include <linux/linkage.h>
24#include <linux/memblock.h>
25#include <linux/memory.h>
26#include <linux/mm.h>
27#include <linux/module.h>
28#include <linux/printk.h>
29#include <linux/sched.h>
30#include <linux/sched/task_stack.h>
31#include <linux/slab.h>
32#include <linux/stacktrace.h>
33#include <linux/string.h>
34#include <linux/types.h>
35#include <linux/vmalloc.h>
36#include <linux/bug.h>
37
38#include "kasan.h"
39#include "../slab.h"
40
41static inline int in_irqentry_text(unsigned long ptr)
42{
43 return (ptr >= (unsigned long)&__irqentry_text_start &&
44 ptr < (unsigned long)&__irqentry_text_end) ||
45 (ptr >= (unsigned long)&__softirqentry_text_start &&
46 ptr < (unsigned long)&__softirqentry_text_end);
47}
48
49static inline void filter_irq_stacks(struct stack_trace *trace)
50{
51 int i;
52
53 if (!trace->nr_entries)
54 return;
55 for (i = 0; i < trace->nr_entries; i++)
56 if (in_irqentry_text(trace->entries[i])) {
57 /* Include the irqentry function into the stack. */
58 trace->nr_entries = i + 1;
59 break;
60 }
61}
62
63static inline depot_stack_handle_t save_stack(gfp_t flags)
64{
65 unsigned long entries[KASAN_STACK_DEPTH];
66 struct stack_trace trace = {
67 .nr_entries = 0,
68 .entries = entries,
69 .max_entries = KASAN_STACK_DEPTH,
70 .skip = 0
71 };
72
73 save_stack_trace(&trace);
74 filter_irq_stacks(&trace);
75 if (trace.nr_entries != 0 &&
76 trace.entries[trace.nr_entries-1] == ULONG_MAX)
77 trace.nr_entries--;
78
79 return depot_save_stack(&trace, flags);
80}
81
82static inline void set_track(struct kasan_track *track, gfp_t flags)
83{
84 track->pid = current->pid;
85 track->stack = save_stack(flags);
86}
87
88void kasan_enable_current(void)
89{
90 current->kasan_depth++;
91}
92
93void kasan_disable_current(void)
94{
95 current->kasan_depth--;
96}
97
98void kasan_check_read(const volatile void *p, unsigned int size)
99{
100 check_memory_region((unsigned long)p, size, false, _RET_IP_);
101}
102EXPORT_SYMBOL(kasan_check_read);
103
104void kasan_check_write(const volatile void *p, unsigned int size)
105{
106 check_memory_region((unsigned long)p, size, true, _RET_IP_);
107}
108EXPORT_SYMBOL(kasan_check_write);
109
110#undef memset
111void *memset(void *addr, int c, size_t len)
112{
113 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
114
115 return __memset(addr, c, len);
116}
117
118#undef memmove
119void *memmove(void *dest, const void *src, size_t len)
120{
121 check_memory_region((unsigned long)src, len, false, _RET_IP_);
122 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
123
124 return __memmove(dest, src, len);
125}
126
127#undef memcpy
128void *memcpy(void *dest, const void *src, size_t len)
129{
130 check_memory_region((unsigned long)src, len, false, _RET_IP_);
131 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
132
133 return __memcpy(dest, src, len);
134}
135
136/*
137 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
138 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
139 */
140void kasan_poison_shadow(const void *address, size_t size, u8 value)
141{
142 void *shadow_start, *shadow_end;
143
144 /*
145 * Perform shadow offset calculation based on untagged address, as
146 * some of the callers (e.g. kasan_poison_object_data) pass tagged
147 * addresses to this function.
148 */
149 address = reset_tag(address);
150
151 shadow_start = kasan_mem_to_shadow(address);
152 shadow_end = kasan_mem_to_shadow(address + size);
153
154 __memset(shadow_start, value, shadow_end - shadow_start);
155}
156
157void kasan_unpoison_shadow(const void *address, size_t size)
158{
159 u8 tag = get_tag(address);
160
161 /*
162 * Perform shadow offset calculation based on untagged address, as
163 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
164 * addresses to this function.
165 */
166 address = reset_tag(address);
167
168 kasan_poison_shadow(address, size, tag);
169
170 if (size & KASAN_SHADOW_MASK) {
171 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
172
173 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
174 *shadow = tag;
175 else
176 *shadow = size & KASAN_SHADOW_MASK;
177 }
178}
179
180static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
181{
182 void *base = task_stack_page(task);
183 size_t size = sp - base;
184
185 kasan_unpoison_shadow(base, size);
186}
187
188/* Unpoison the entire stack for a task. */
189void kasan_unpoison_task_stack(struct task_struct *task)
190{
191 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
192}
193
194/* Unpoison the stack for the current task beyond a watermark sp value. */
195asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
196{
197 /*
198 * Calculate the task stack base address. Avoid using 'current'
199 * because this function is called by early resume code which hasn't
200 * yet set up the percpu register (%gs).
201 */
202 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
203
204 kasan_unpoison_shadow(base, watermark - base);
205}
206
207/*
208 * Clear all poison for the region between the current SP and a provided
209 * watermark value, as is sometimes required prior to hand-crafted asm function
210 * returns in the middle of functions.
211 */
212void kasan_unpoison_stack_above_sp_to(const void *watermark)
213{
214 const void *sp = __builtin_frame_address(0);
215 size_t size = watermark - sp;
216
217 if (WARN_ON(sp > watermark))
218 return;
219 kasan_unpoison_shadow(sp, size);
220}
221
222void kasan_alloc_pages(struct page *page, unsigned int order)
223{
224 u8 tag;
225 unsigned long i;
226
227 if (unlikely(PageHighMem(page)))
228 return;
229
230 tag = random_tag();
231 for (i = 0; i < (1 << order); i++)
232 page_kasan_tag_set(page + i, tag);
233 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
234}
235
236void kasan_free_pages(struct page *page, unsigned int order)
237{
238 if (likely(!PageHighMem(page)))
239 kasan_poison_shadow(page_address(page),
240 PAGE_SIZE << order,
241 KASAN_FREE_PAGE);
242}
243
244/*
245 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
246 * For larger allocations larger redzones are used.
247 */
248static inline unsigned int optimal_redzone(unsigned int object_size)
249{
250 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
251 return 0;
252
253 return
254 object_size <= 64 - 16 ? 16 :
255 object_size <= 128 - 32 ? 32 :
256 object_size <= 512 - 64 ? 64 :
257 object_size <= 4096 - 128 ? 128 :
258 object_size <= (1 << 14) - 256 ? 256 :
259 object_size <= (1 << 15) - 512 ? 512 :
260 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
261}
262
263void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
264 slab_flags_t *flags)
265{
266 unsigned int orig_size = *size;
267 unsigned int redzone_size;
268 int redzone_adjust;
269
270 /* Add alloc meta. */
271 cache->kasan_info.alloc_meta_offset = *size;
272 *size += sizeof(struct kasan_alloc_meta);
273
274 /* Add free meta. */
275 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
276 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
277 cache->object_size < sizeof(struct kasan_free_meta))) {
278 cache->kasan_info.free_meta_offset = *size;
279 *size += sizeof(struct kasan_free_meta);
280 }
281
282 redzone_size = optimal_redzone(cache->object_size);
283 redzone_adjust = redzone_size - (*size - cache->object_size);
284 if (redzone_adjust > 0)
285 *size += redzone_adjust;
286
287 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
288 max(*size, cache->object_size + redzone_size));
289
290 /*
291 * If the metadata doesn't fit, don't enable KASAN at all.
292 */
293 if (*size <= cache->kasan_info.alloc_meta_offset ||
294 *size <= cache->kasan_info.free_meta_offset) {
295 cache->kasan_info.alloc_meta_offset = 0;
296 cache->kasan_info.free_meta_offset = 0;
297 *size = orig_size;
298 return;
299 }
300
301 cache->align = round_up(cache->align, KASAN_SHADOW_SCALE_SIZE);
302
303 *flags |= SLAB_KASAN;
304}
305
306size_t kasan_metadata_size(struct kmem_cache *cache)
307{
308 return (cache->kasan_info.alloc_meta_offset ?
309 sizeof(struct kasan_alloc_meta) : 0) +
310 (cache->kasan_info.free_meta_offset ?
311 sizeof(struct kasan_free_meta) : 0);
312}
313
314struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
315 const void *object)
316{
317 BUILD_BUG_ON(sizeof(struct kasan_alloc_meta) > 32);
318 return (void *)object + cache->kasan_info.alloc_meta_offset;
319}
320
321struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
322 const void *object)
323{
324 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
325 return (void *)object + cache->kasan_info.free_meta_offset;
326}
327
328void kasan_poison_slab(struct page *page)
329{
330 unsigned long i;
331
332 for (i = 0; i < (1 << compound_order(page)); i++)
333 page_kasan_tag_reset(page + i);
334 kasan_poison_shadow(page_address(page),
335 PAGE_SIZE << compound_order(page),
336 KASAN_KMALLOC_REDZONE);
337}
338
339void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
340{
341 kasan_unpoison_shadow(object, cache->object_size);
342}
343
344void kasan_poison_object_data(struct kmem_cache *cache, void *object)
345{
346 kasan_poison_shadow(object,
347 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
348 KASAN_KMALLOC_REDZONE);
349}
350
351/*
352 * Since it's desirable to only call object contructors once during slab
353 * allocation, we preassign tags to all such objects. Also preassign tags for
354 * SLAB_TYPESAFE_BY_RCU slabs to avoid use-after-free reports.
355 * For SLAB allocator we can't preassign tags randomly since the freelist is
356 * stored as an array of indexes instead of a linked list. Assign tags based
357 * on objects indexes, so that objects that are next to each other get
358 * different tags.
359 * After a tag is assigned, the object always gets allocated with the same tag.
360 * The reason is that we can't change tags for objects with constructors on
361 * reallocation (even for non-SLAB_TYPESAFE_BY_RCU), because the constructor
362 * code can save the pointer to the object somewhere (e.g. in the object
363 * itself). Then if we retag it, the old saved pointer will become invalid.
364 */
365static u8 assign_tag(struct kmem_cache *cache, const void *object, bool new)
366{
367 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
368 return new ? KASAN_TAG_KERNEL : random_tag();
369
370#ifdef CONFIG_SLAB
371 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
372#else
373 return new ? random_tag() : get_tag(object);
374#endif
375}
376
377void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
378 const void *object)
379{
380 struct kasan_alloc_meta *alloc_info;
381
382 if (!(cache->flags & SLAB_KASAN))
383 return (void *)object;
384
385 alloc_info = get_alloc_info(cache, object);
386 __memset(alloc_info, 0, sizeof(*alloc_info));
387
388 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
389 object = set_tag(object, assign_tag(cache, object, true));
390
391 return (void *)object;
392}
393
394void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
395 gfp_t flags)
396{
397 return kasan_kmalloc(cache, object, cache->object_size, flags);
398}
399
400static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
401{
402 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
403 return shadow_byte < 0 ||
404 shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
405 else
406 return tag != (u8)shadow_byte;
407}
408
409static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
410 unsigned long ip, bool quarantine)
411{
412 s8 shadow_byte;
413 u8 tag;
414 void *tagged_object;
415 unsigned long rounded_up_size;
416
417 tag = get_tag(object);
418 tagged_object = object;
419 object = reset_tag(object);
420
421 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
422 object)) {
423 kasan_report_invalid_free(tagged_object, ip);
424 return true;
425 }
426
427 /* RCU slabs could be legally used after free within the RCU period */
428 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
429 return false;
430
431 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
432 if (shadow_invalid(tag, shadow_byte)) {
433 kasan_report_invalid_free(tagged_object, ip);
434 return true;
435 }
436
437 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
438 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
439
440 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
441 unlikely(!(cache->flags & SLAB_KASAN)))
442 return false;
443
444 set_track(&get_alloc_info(cache, object)->free_track, GFP_NOWAIT);
445 quarantine_put(get_free_info(cache, object), cache);
446
447 return IS_ENABLED(CONFIG_KASAN_GENERIC);
448}
449
450bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
451{
452 return __kasan_slab_free(cache, object, ip, true);
453}
454
455void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
456 size_t size, gfp_t flags)
457{
458 unsigned long redzone_start;
459 unsigned long redzone_end;
460 u8 tag;
461
462 if (gfpflags_allow_blocking(flags))
463 quarantine_reduce();
464
465 if (unlikely(object == NULL))
466 return NULL;
467
468 redzone_start = round_up((unsigned long)(object + size),
469 KASAN_SHADOW_SCALE_SIZE);
470 redzone_end = round_up((unsigned long)object + cache->object_size,
471 KASAN_SHADOW_SCALE_SIZE);
472
473 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
474 tag = assign_tag(cache, object, false);
475
476 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
477 kasan_unpoison_shadow(set_tag(object, tag), size);
478 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
479 KASAN_KMALLOC_REDZONE);
480
481 if (cache->flags & SLAB_KASAN)
482 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
483
484 return set_tag(object, tag);
485}
486EXPORT_SYMBOL(kasan_kmalloc);
487
488void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
489 gfp_t flags)
490{
491 struct page *page;
492 unsigned long redzone_start;
493 unsigned long redzone_end;
494
495 if (gfpflags_allow_blocking(flags))
496 quarantine_reduce();
497
498 if (unlikely(ptr == NULL))
499 return NULL;
500
501 page = virt_to_page(ptr);
502 redzone_start = round_up((unsigned long)(ptr + size),
503 KASAN_SHADOW_SCALE_SIZE);
504 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
505
506 kasan_unpoison_shadow(ptr, size);
507 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
508 KASAN_PAGE_REDZONE);
509
510 return (void *)ptr;
511}
512
513void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
514{
515 struct page *page;
516
517 if (unlikely(object == ZERO_SIZE_PTR))
518 return (void *)object;
519
520 page = virt_to_head_page(object);
521
522 if (unlikely(!PageSlab(page)))
523 return kasan_kmalloc_large(object, size, flags);
524 else
525 return kasan_kmalloc(page->slab_cache, object, size, flags);
526}
527
528void kasan_poison_kfree(void *ptr, unsigned long ip)
529{
530 struct page *page;
531
532 page = virt_to_head_page(ptr);
533
534 if (unlikely(!PageSlab(page))) {
535 if (ptr != page_address(page)) {
536 kasan_report_invalid_free(ptr, ip);
537 return;
538 }
539 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
540 KASAN_FREE_PAGE);
541 } else {
542 __kasan_slab_free(page->slab_cache, ptr, ip, false);
543 }
544}
545
546void kasan_kfree_large(void *ptr, unsigned long ip)
547{
548 if (ptr != page_address(virt_to_head_page(ptr)))
549 kasan_report_invalid_free(ptr, ip);
550 /* The object will be poisoned by page_alloc. */
551}
552
553int kasan_module_alloc(void *addr, size_t size)
554{
555 void *ret;
556 size_t scaled_size;
557 size_t shadow_size;
558 unsigned long shadow_start;
559
560 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
561 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
562 shadow_size = round_up(scaled_size, PAGE_SIZE);
563
564 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
565 return -EINVAL;
566
567 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
568 shadow_start + shadow_size,
569 GFP_KERNEL,
570 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
571 __builtin_return_address(0));
572
573 if (ret) {
574 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
575 find_vm_area(addr)->flags |= VM_KASAN;
576 kmemleak_ignore(ret);
577 return 0;
578 }
579
580 return -ENOMEM;
581}
582
583void kasan_free_shadow(const struct vm_struct *vm)
584{
585 if (vm->flags & VM_KASAN)
586 vfree(kasan_mem_to_shadow(vm->addr));
587}
588
589#ifdef CONFIG_MEMORY_HOTPLUG
590static bool shadow_mapped(unsigned long addr)
591{
592 pgd_t *pgd = pgd_offset_k(addr);
593 p4d_t *p4d;
594 pud_t *pud;
595 pmd_t *pmd;
596 pte_t *pte;
597
598 if (pgd_none(*pgd))
599 return false;
600 p4d = p4d_offset(pgd, addr);
601 if (p4d_none(*p4d))
602 return false;
603 pud = pud_offset(p4d, addr);
604 if (pud_none(*pud))
605 return false;
606
607 /*
608 * We can't use pud_large() or pud_huge(), the first one is
609 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
610 * pud_bad(), if pud is bad then it's bad because it's huge.
611 */
612 if (pud_bad(*pud))
613 return true;
614 pmd = pmd_offset(pud, addr);
615 if (pmd_none(*pmd))
616 return false;
617
618 if (pmd_bad(*pmd))
619 return true;
620 pte = pte_offset_kernel(pmd, addr);
621 return !pte_none(*pte);
622}
623
624static int __meminit kasan_mem_notifier(struct notifier_block *nb,
625 unsigned long action, void *data)
626{
627 struct memory_notify *mem_data = data;
628 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
629 unsigned long shadow_end, shadow_size;
630
631 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
632 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
633 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
634 shadow_size = nr_shadow_pages << PAGE_SHIFT;
635 shadow_end = shadow_start + shadow_size;
636
637 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
638 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
639 return NOTIFY_BAD;
640
641 switch (action) {
642 case MEM_GOING_ONLINE: {
643 void *ret;
644
645 /*
646 * If shadow is mapped already than it must have been mapped
647 * during the boot. This could happen if we onlining previously
648 * offlined memory.
649 */
650 if (shadow_mapped(shadow_start))
651 return NOTIFY_OK;
652
653 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
654 shadow_end, GFP_KERNEL,
655 PAGE_KERNEL, VM_NO_GUARD,
656 pfn_to_nid(mem_data->start_pfn),
657 __builtin_return_address(0));
658 if (!ret)
659 return NOTIFY_BAD;
660
661 kmemleak_ignore(ret);
662 return NOTIFY_OK;
663 }
664 case MEM_CANCEL_ONLINE:
665 case MEM_OFFLINE: {
666 struct vm_struct *vm;
667
668 /*
669 * shadow_start was either mapped during boot by kasan_init()
670 * or during memory online by __vmalloc_node_range().
671 * In the latter case we can use vfree() to free shadow.
672 * Non-NULL result of the find_vm_area() will tell us if
673 * that was the second case.
674 *
675 * Currently it's not possible to free shadow mapped
676 * during boot by kasan_init(). It's because the code
677 * to do that hasn't been written yet. So we'll just
678 * leak the memory.
679 */
680 vm = find_vm_area((void *)shadow_start);
681 if (vm)
682 vfree((void *)shadow_start);
683 }
684 }
685
686 return NOTIFY_OK;
687}
688
689static int __init kasan_memhotplug_init(void)
690{
691 hotplug_memory_notifier(kasan_mem_notifier, 0);
692
693 return 0;
694}
695
696core_initcall(kasan_memhotplug_init);
697#endif