diff options
Diffstat (limited to 'lib/crypto/aes.c')
-rw-r--r-- | lib/crypto/aes.c | 356 |
1 files changed, 356 insertions, 0 deletions
diff --git a/lib/crypto/aes.c b/lib/crypto/aes.c new file mode 100644 index 000000000000..827fe89922ff --- /dev/null +++ b/lib/crypto/aes.c | |||
@@ -0,0 +1,356 @@ | |||
1 | // SPDX-License-Identifier: GPL-2.0 | ||
2 | /* | ||
3 | * Copyright (C) 2017-2019 Linaro Ltd <ard.biesheuvel@linaro.org> | ||
4 | */ | ||
5 | |||
6 | #include <crypto/aes.h> | ||
7 | #include <linux/crypto.h> | ||
8 | #include <linux/module.h> | ||
9 | #include <asm/unaligned.h> | ||
10 | |||
11 | /* | ||
12 | * Emit the sbox as volatile const to prevent the compiler from doing | ||
13 | * constant folding on sbox references involving fixed indexes. | ||
14 | */ | ||
15 | static volatile const u8 __cacheline_aligned aes_sbox[] = { | ||
16 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, | ||
17 | 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, | ||
18 | 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, | ||
19 | 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, | ||
20 | 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, | ||
21 | 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, | ||
22 | 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, | ||
23 | 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, | ||
24 | 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, | ||
25 | 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, | ||
26 | 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, | ||
27 | 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, | ||
28 | 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, | ||
29 | 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, | ||
30 | 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, | ||
31 | 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, | ||
32 | 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, | ||
33 | 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, | ||
34 | 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, | ||
35 | 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, | ||
36 | 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, | ||
37 | 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, | ||
38 | 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, | ||
39 | 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, | ||
40 | 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, | ||
41 | 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, | ||
42 | 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, | ||
43 | 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, | ||
44 | 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, | ||
45 | 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, | ||
46 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, | ||
47 | 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, | ||
48 | }; | ||
49 | |||
50 | static volatile const u8 __cacheline_aligned aes_inv_sbox[] = { | ||
51 | 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, | ||
52 | 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, | ||
53 | 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, | ||
54 | 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, | ||
55 | 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, | ||
56 | 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, | ||
57 | 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, | ||
58 | 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, | ||
59 | 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, | ||
60 | 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, | ||
61 | 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, | ||
62 | 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, | ||
63 | 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, | ||
64 | 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, | ||
65 | 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, | ||
66 | 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, | ||
67 | 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, | ||
68 | 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, | ||
69 | 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, | ||
70 | 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, | ||
71 | 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, | ||
72 | 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, | ||
73 | 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, | ||
74 | 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, | ||
75 | 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, | ||
76 | 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, | ||
77 | 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, | ||
78 | 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, | ||
79 | 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, | ||
80 | 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, | ||
81 | 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, | ||
82 | 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, | ||
83 | }; | ||
84 | |||
85 | extern const u8 crypto_aes_sbox[256] __alias(aes_sbox); | ||
86 | extern const u8 crypto_aes_inv_sbox[256] __alias(aes_inv_sbox); | ||
87 | |||
88 | EXPORT_SYMBOL(crypto_aes_sbox); | ||
89 | EXPORT_SYMBOL(crypto_aes_inv_sbox); | ||
90 | |||
91 | static u32 mul_by_x(u32 w) | ||
92 | { | ||
93 | u32 x = w & 0x7f7f7f7f; | ||
94 | u32 y = w & 0x80808080; | ||
95 | |||
96 | /* multiply by polynomial 'x' (0b10) in GF(2^8) */ | ||
97 | return (x << 1) ^ (y >> 7) * 0x1b; | ||
98 | } | ||
99 | |||
100 | static u32 mul_by_x2(u32 w) | ||
101 | { | ||
102 | u32 x = w & 0x3f3f3f3f; | ||
103 | u32 y = w & 0x80808080; | ||
104 | u32 z = w & 0x40404040; | ||
105 | |||
106 | /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */ | ||
107 | return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b; | ||
108 | } | ||
109 | |||
110 | static u32 mix_columns(u32 x) | ||
111 | { | ||
112 | /* | ||
113 | * Perform the following matrix multiplication in GF(2^8) | ||
114 | * | ||
115 | * | 0x2 0x3 0x1 0x1 | | x[0] | | ||
116 | * | 0x1 0x2 0x3 0x1 | | x[1] | | ||
117 | * | 0x1 0x1 0x2 0x3 | x | x[2] | | ||
118 | * | 0x3 0x1 0x1 0x2 | | x[3] | | ||
119 | */ | ||
120 | u32 y = mul_by_x(x) ^ ror32(x, 16); | ||
121 | |||
122 | return y ^ ror32(x ^ y, 8); | ||
123 | } | ||
124 | |||
125 | static u32 inv_mix_columns(u32 x) | ||
126 | { | ||
127 | /* | ||
128 | * Perform the following matrix multiplication in GF(2^8) | ||
129 | * | ||
130 | * | 0xe 0xb 0xd 0x9 | | x[0] | | ||
131 | * | 0x9 0xe 0xb 0xd | | x[1] | | ||
132 | * | 0xd 0x9 0xe 0xb | x | x[2] | | ||
133 | * | 0xb 0xd 0x9 0xe | | x[3] | | ||
134 | * | ||
135 | * which can conveniently be reduced to | ||
136 | * | ||
137 | * | 0x2 0x3 0x1 0x1 | | 0x5 0x0 0x4 0x0 | | x[0] | | ||
138 | * | 0x1 0x2 0x3 0x1 | | 0x0 0x5 0x0 0x4 | | x[1] | | ||
139 | * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] | | ||
140 | * | 0x3 0x1 0x1 0x2 | | 0x0 0x4 0x0 0x5 | | x[3] | | ||
141 | */ | ||
142 | u32 y = mul_by_x2(x); | ||
143 | |||
144 | return mix_columns(x ^ y ^ ror32(y, 16)); | ||
145 | } | ||
146 | |||
147 | static __always_inline u32 subshift(u32 in[], int pos) | ||
148 | { | ||
149 | return (aes_sbox[in[pos] & 0xff]) ^ | ||
150 | (aes_sbox[(in[(pos + 1) % 4] >> 8) & 0xff] << 8) ^ | ||
151 | (aes_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ | ||
152 | (aes_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24); | ||
153 | } | ||
154 | |||
155 | static __always_inline u32 inv_subshift(u32 in[], int pos) | ||
156 | { | ||
157 | return (aes_inv_sbox[in[pos] & 0xff]) ^ | ||
158 | (aes_inv_sbox[(in[(pos + 3) % 4] >> 8) & 0xff] << 8) ^ | ||
159 | (aes_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ | ||
160 | (aes_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24); | ||
161 | } | ||
162 | |||
163 | static u32 subw(u32 in) | ||
164 | { | ||
165 | return (aes_sbox[in & 0xff]) ^ | ||
166 | (aes_sbox[(in >> 8) & 0xff] << 8) ^ | ||
167 | (aes_sbox[(in >> 16) & 0xff] << 16) ^ | ||
168 | (aes_sbox[(in >> 24) & 0xff] << 24); | ||
169 | } | ||
170 | |||
171 | /** | ||
172 | * aes_expandkey - Expands the AES key as described in FIPS-197 | ||
173 | * @ctx: The location where the computed key will be stored. | ||
174 | * @in_key: The supplied key. | ||
175 | * @key_len: The length of the supplied key. | ||
176 | * | ||
177 | * Returns 0 on success. The function fails only if an invalid key size (or | ||
178 | * pointer) is supplied. | ||
179 | * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes | ||
180 | * key schedule plus a 16 bytes key which is used before the first round). | ||
181 | * The decryption key is prepared for the "Equivalent Inverse Cipher" as | ||
182 | * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is | ||
183 | * for the initial combination, the second slot for the first round and so on. | ||
184 | */ | ||
185 | int aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, | ||
186 | unsigned int key_len) | ||
187 | { | ||
188 | u32 kwords = key_len / sizeof(u32); | ||
189 | u32 rc, i, j; | ||
190 | int err; | ||
191 | |||
192 | err = aes_check_keylen(key_len); | ||
193 | if (err) | ||
194 | return err; | ||
195 | |||
196 | ctx->key_length = key_len; | ||
197 | |||
198 | for (i = 0; i < kwords; i++) | ||
199 | ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32)); | ||
200 | |||
201 | for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) { | ||
202 | u32 *rki = ctx->key_enc + (i * kwords); | ||
203 | u32 *rko = rki + kwords; | ||
204 | |||
205 | rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0]; | ||
206 | rko[1] = rko[0] ^ rki[1]; | ||
207 | rko[2] = rko[1] ^ rki[2]; | ||
208 | rko[3] = rko[2] ^ rki[3]; | ||
209 | |||
210 | if (key_len == AES_KEYSIZE_192) { | ||
211 | if (i >= 7) | ||
212 | break; | ||
213 | rko[4] = rko[3] ^ rki[4]; | ||
214 | rko[5] = rko[4] ^ rki[5]; | ||
215 | } else if (key_len == AES_KEYSIZE_256) { | ||
216 | if (i >= 6) | ||
217 | break; | ||
218 | rko[4] = subw(rko[3]) ^ rki[4]; | ||
219 | rko[5] = rko[4] ^ rki[5]; | ||
220 | rko[6] = rko[5] ^ rki[6]; | ||
221 | rko[7] = rko[6] ^ rki[7]; | ||
222 | } | ||
223 | } | ||
224 | |||
225 | /* | ||
226 | * Generate the decryption keys for the Equivalent Inverse Cipher. | ||
227 | * This involves reversing the order of the round keys, and applying | ||
228 | * the Inverse Mix Columns transformation to all but the first and | ||
229 | * the last one. | ||
230 | */ | ||
231 | ctx->key_dec[0] = ctx->key_enc[key_len + 24]; | ||
232 | ctx->key_dec[1] = ctx->key_enc[key_len + 25]; | ||
233 | ctx->key_dec[2] = ctx->key_enc[key_len + 26]; | ||
234 | ctx->key_dec[3] = ctx->key_enc[key_len + 27]; | ||
235 | |||
236 | for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) { | ||
237 | ctx->key_dec[i] = inv_mix_columns(ctx->key_enc[j]); | ||
238 | ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]); | ||
239 | ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]); | ||
240 | ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]); | ||
241 | } | ||
242 | |||
243 | ctx->key_dec[i] = ctx->key_enc[0]; | ||
244 | ctx->key_dec[i + 1] = ctx->key_enc[1]; | ||
245 | ctx->key_dec[i + 2] = ctx->key_enc[2]; | ||
246 | ctx->key_dec[i + 3] = ctx->key_enc[3]; | ||
247 | |||
248 | return 0; | ||
249 | } | ||
250 | EXPORT_SYMBOL(aes_expandkey); | ||
251 | |||
252 | /** | ||
253 | * aes_encrypt - Encrypt a single AES block | ||
254 | * @ctx: Context struct containing the key schedule | ||
255 | * @out: Buffer to store the ciphertext | ||
256 | * @in: Buffer containing the plaintext | ||
257 | */ | ||
258 | void aes_encrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in) | ||
259 | { | ||
260 | const u32 *rkp = ctx->key_enc + 4; | ||
261 | int rounds = 6 + ctx->key_length / 4; | ||
262 | u32 st0[4], st1[4]; | ||
263 | int round; | ||
264 | |||
265 | st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in); | ||
266 | st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4); | ||
267 | st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8); | ||
268 | st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12); | ||
269 | |||
270 | /* | ||
271 | * Force the compiler to emit data independent Sbox references, | ||
272 | * by xoring the input with Sbox values that are known to add up | ||
273 | * to zero. This pulls the entire Sbox into the D-cache before any | ||
274 | * data dependent lookups are done. | ||
275 | */ | ||
276 | st0[0] ^= aes_sbox[ 0] ^ aes_sbox[ 64] ^ aes_sbox[134] ^ aes_sbox[195]; | ||
277 | st0[1] ^= aes_sbox[16] ^ aes_sbox[ 82] ^ aes_sbox[158] ^ aes_sbox[221]; | ||
278 | st0[2] ^= aes_sbox[32] ^ aes_sbox[ 96] ^ aes_sbox[160] ^ aes_sbox[234]; | ||
279 | st0[3] ^= aes_sbox[48] ^ aes_sbox[112] ^ aes_sbox[186] ^ aes_sbox[241]; | ||
280 | |||
281 | for (round = 0;; round += 2, rkp += 8) { | ||
282 | st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0]; | ||
283 | st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1]; | ||
284 | st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2]; | ||
285 | st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3]; | ||
286 | |||
287 | if (round == rounds - 2) | ||
288 | break; | ||
289 | |||
290 | st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4]; | ||
291 | st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5]; | ||
292 | st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6]; | ||
293 | st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7]; | ||
294 | } | ||
295 | |||
296 | put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out); | ||
297 | put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4); | ||
298 | put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8); | ||
299 | put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12); | ||
300 | } | ||
301 | EXPORT_SYMBOL(aes_encrypt); | ||
302 | |||
303 | /** | ||
304 | * aes_decrypt - Decrypt a single AES block | ||
305 | * @ctx: Context struct containing the key schedule | ||
306 | * @out: Buffer to store the plaintext | ||
307 | * @in: Buffer containing the ciphertext | ||
308 | */ | ||
309 | void aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in) | ||
310 | { | ||
311 | const u32 *rkp = ctx->key_dec + 4; | ||
312 | int rounds = 6 + ctx->key_length / 4; | ||
313 | u32 st0[4], st1[4]; | ||
314 | int round; | ||
315 | |||
316 | st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in); | ||
317 | st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4); | ||
318 | st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8); | ||
319 | st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12); | ||
320 | |||
321 | /* | ||
322 | * Force the compiler to emit data independent Sbox references, | ||
323 | * by xoring the input with Sbox values that are known to add up | ||
324 | * to zero. This pulls the entire Sbox into the D-cache before any | ||
325 | * data dependent lookups are done. | ||
326 | */ | ||
327 | st0[0] ^= aes_inv_sbox[ 0] ^ aes_inv_sbox[ 64] ^ aes_inv_sbox[129] ^ aes_inv_sbox[200]; | ||
328 | st0[1] ^= aes_inv_sbox[16] ^ aes_inv_sbox[ 83] ^ aes_inv_sbox[150] ^ aes_inv_sbox[212]; | ||
329 | st0[2] ^= aes_inv_sbox[32] ^ aes_inv_sbox[ 96] ^ aes_inv_sbox[160] ^ aes_inv_sbox[236]; | ||
330 | st0[3] ^= aes_inv_sbox[48] ^ aes_inv_sbox[112] ^ aes_inv_sbox[187] ^ aes_inv_sbox[247]; | ||
331 | |||
332 | for (round = 0;; round += 2, rkp += 8) { | ||
333 | st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0]; | ||
334 | st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1]; | ||
335 | st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2]; | ||
336 | st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3]; | ||
337 | |||
338 | if (round == rounds - 2) | ||
339 | break; | ||
340 | |||
341 | st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4]; | ||
342 | st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5]; | ||
343 | st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6]; | ||
344 | st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7]; | ||
345 | } | ||
346 | |||
347 | put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out); | ||
348 | put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4); | ||
349 | put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8); | ||
350 | put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12); | ||
351 | } | ||
352 | EXPORT_SYMBOL(aes_decrypt); | ||
353 | |||
354 | MODULE_DESCRIPTION("Generic AES library"); | ||
355 | MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); | ||
356 | MODULE_LICENSE("GPL v2"); | ||