diff options
Diffstat (limited to 'kernel/time/posix-timers.c')
-rw-r--r-- | kernel/time/posix-timers.c | 759 |
1 files changed, 497 insertions, 262 deletions
diff --git a/kernel/time/posix-timers.c b/kernel/time/posix-timers.c index 4d7b2ce09c27..82d67be7d9d1 100644 --- a/kernel/time/posix-timers.c +++ b/kernel/time/posix-timers.c | |||
@@ -49,8 +49,10 @@ | |||
49 | #include <linux/workqueue.h> | 49 | #include <linux/workqueue.h> |
50 | #include <linux/export.h> | 50 | #include <linux/export.h> |
51 | #include <linux/hashtable.h> | 51 | #include <linux/hashtable.h> |
52 | #include <linux/compat.h> | ||
52 | 53 | ||
53 | #include "timekeeping.h" | 54 | #include "timekeeping.h" |
55 | #include "posix-timers.h" | ||
54 | 56 | ||
55 | /* | 57 | /* |
56 | * Management arrays for POSIX timers. Timers are now kept in static hash table | 58 | * Management arrays for POSIX timers. Timers are now kept in static hash table |
@@ -69,6 +71,10 @@ static struct kmem_cache *posix_timers_cache; | |||
69 | static DEFINE_HASHTABLE(posix_timers_hashtable, 9); | 71 | static DEFINE_HASHTABLE(posix_timers_hashtable, 9); |
70 | static DEFINE_SPINLOCK(hash_lock); | 72 | static DEFINE_SPINLOCK(hash_lock); |
71 | 73 | ||
74 | static const struct k_clock * const posix_clocks[]; | ||
75 | static const struct k_clock *clockid_to_kclock(const clockid_t id); | ||
76 | static const struct k_clock clock_realtime, clock_monotonic; | ||
77 | |||
72 | /* | 78 | /* |
73 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other | 79 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other |
74 | * SIGEV values. Here we put out an error if this assumption fails. | 80 | * SIGEV values. Here we put out an error if this assumption fails. |
@@ -124,22 +130,6 @@ static DEFINE_SPINLOCK(hash_lock); | |||
124 | * have is CLOCK_REALTIME and its high res counter part, both of | 130 | * have is CLOCK_REALTIME and its high res counter part, both of |
125 | * which we beg off on and pass to do_sys_settimeofday(). | 131 | * which we beg off on and pass to do_sys_settimeofday(). |
126 | */ | 132 | */ |
127 | |||
128 | static struct k_clock posix_clocks[MAX_CLOCKS]; | ||
129 | |||
130 | /* | ||
131 | * These ones are defined below. | ||
132 | */ | ||
133 | static int common_nsleep(const clockid_t, int flags, struct timespec64 *t, | ||
134 | struct timespec __user *rmtp); | ||
135 | static int common_timer_create(struct k_itimer *new_timer); | ||
136 | static void common_timer_get(struct k_itimer *, struct itimerspec64 *); | ||
137 | static int common_timer_set(struct k_itimer *, int, | ||
138 | struct itimerspec64 *, struct itimerspec64 *); | ||
139 | static int common_timer_del(struct k_itimer *timer); | ||
140 | |||
141 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *data); | ||
142 | |||
143 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); | 133 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); |
144 | 134 | ||
145 | #define lock_timer(tid, flags) \ | 135 | #define lock_timer(tid, flags) \ |
@@ -285,91 +275,23 @@ static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) | |||
285 | */ | 275 | */ |
286 | static __init int init_posix_timers(void) | 276 | static __init int init_posix_timers(void) |
287 | { | 277 | { |
288 | struct k_clock clock_realtime = { | ||
289 | .clock_getres = posix_get_hrtimer_res, | ||
290 | .clock_get = posix_clock_realtime_get, | ||
291 | .clock_set = posix_clock_realtime_set, | ||
292 | .clock_adj = posix_clock_realtime_adj, | ||
293 | .nsleep = common_nsleep, | ||
294 | .nsleep_restart = hrtimer_nanosleep_restart, | ||
295 | .timer_create = common_timer_create, | ||
296 | .timer_set = common_timer_set, | ||
297 | .timer_get = common_timer_get, | ||
298 | .timer_del = common_timer_del, | ||
299 | }; | ||
300 | struct k_clock clock_monotonic = { | ||
301 | .clock_getres = posix_get_hrtimer_res, | ||
302 | .clock_get = posix_ktime_get_ts, | ||
303 | .nsleep = common_nsleep, | ||
304 | .nsleep_restart = hrtimer_nanosleep_restart, | ||
305 | .timer_create = common_timer_create, | ||
306 | .timer_set = common_timer_set, | ||
307 | .timer_get = common_timer_get, | ||
308 | .timer_del = common_timer_del, | ||
309 | }; | ||
310 | struct k_clock clock_monotonic_raw = { | ||
311 | .clock_getres = posix_get_hrtimer_res, | ||
312 | .clock_get = posix_get_monotonic_raw, | ||
313 | }; | ||
314 | struct k_clock clock_realtime_coarse = { | ||
315 | .clock_getres = posix_get_coarse_res, | ||
316 | .clock_get = posix_get_realtime_coarse, | ||
317 | }; | ||
318 | struct k_clock clock_monotonic_coarse = { | ||
319 | .clock_getres = posix_get_coarse_res, | ||
320 | .clock_get = posix_get_monotonic_coarse, | ||
321 | }; | ||
322 | struct k_clock clock_tai = { | ||
323 | .clock_getres = posix_get_hrtimer_res, | ||
324 | .clock_get = posix_get_tai, | ||
325 | .nsleep = common_nsleep, | ||
326 | .nsleep_restart = hrtimer_nanosleep_restart, | ||
327 | .timer_create = common_timer_create, | ||
328 | .timer_set = common_timer_set, | ||
329 | .timer_get = common_timer_get, | ||
330 | .timer_del = common_timer_del, | ||
331 | }; | ||
332 | struct k_clock clock_boottime = { | ||
333 | .clock_getres = posix_get_hrtimer_res, | ||
334 | .clock_get = posix_get_boottime, | ||
335 | .nsleep = common_nsleep, | ||
336 | .nsleep_restart = hrtimer_nanosleep_restart, | ||
337 | .timer_create = common_timer_create, | ||
338 | .timer_set = common_timer_set, | ||
339 | .timer_get = common_timer_get, | ||
340 | .timer_del = common_timer_del, | ||
341 | }; | ||
342 | |||
343 | posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime); | ||
344 | posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic); | ||
345 | posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | ||
346 | posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | ||
347 | posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | ||
348 | posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime); | ||
349 | posix_timers_register_clock(CLOCK_TAI, &clock_tai); | ||
350 | |||
351 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | 278 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
352 | sizeof (struct k_itimer), 0, SLAB_PANIC, | 279 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
353 | NULL); | 280 | NULL); |
354 | return 0; | 281 | return 0; |
355 | } | 282 | } |
356 | |||
357 | __initcall(init_posix_timers); | 283 | __initcall(init_posix_timers); |
358 | 284 | ||
359 | static void schedule_next_timer(struct k_itimer *timr) | 285 | static void common_hrtimer_rearm(struct k_itimer *timr) |
360 | { | 286 | { |
361 | struct hrtimer *timer = &timr->it.real.timer; | 287 | struct hrtimer *timer = &timr->it.real.timer; |
362 | 288 | ||
363 | if (timr->it.real.interval == 0) | 289 | if (!timr->it_interval) |
364 | return; | 290 | return; |
365 | 291 | ||
366 | timr->it_overrun += (unsigned int) hrtimer_forward(timer, | 292 | timr->it_overrun += (unsigned int) hrtimer_forward(timer, |
367 | timer->base->get_time(), | 293 | timer->base->get_time(), |
368 | timr->it.real.interval); | 294 | timr->it_interval); |
369 | |||
370 | timr->it_overrun_last = timr->it_overrun; | ||
371 | timr->it_overrun = -1; | ||
372 | ++timr->it_requeue_pending; | ||
373 | hrtimer_restart(timer); | 295 | hrtimer_restart(timer); |
374 | } | 296 | } |
375 | 297 | ||
@@ -384,24 +306,27 @@ static void schedule_next_timer(struct k_itimer *timr) | |||
384 | * To protect against the timer going away while the interrupt is queued, | 306 | * To protect against the timer going away while the interrupt is queued, |
385 | * we require that the it_requeue_pending flag be set. | 307 | * we require that the it_requeue_pending flag be set. |
386 | */ | 308 | */ |
387 | void do_schedule_next_timer(struct siginfo *info) | 309 | void posixtimer_rearm(struct siginfo *info) |
388 | { | 310 | { |
389 | struct k_itimer *timr; | 311 | struct k_itimer *timr; |
390 | unsigned long flags; | 312 | unsigned long flags; |
391 | 313 | ||
392 | timr = lock_timer(info->si_tid, &flags); | 314 | timr = lock_timer(info->si_tid, &flags); |
315 | if (!timr) | ||
316 | return; | ||
393 | 317 | ||
394 | if (timr && timr->it_requeue_pending == info->si_sys_private) { | 318 | if (timr->it_requeue_pending == info->si_sys_private) { |
395 | if (timr->it_clock < 0) | 319 | timr->kclock->timer_rearm(timr); |
396 | posix_cpu_timer_schedule(timr); | 320 | |
397 | else | 321 | timr->it_active = 1; |
398 | schedule_next_timer(timr); | 322 | timr->it_overrun_last = timr->it_overrun; |
323 | timr->it_overrun = -1; | ||
324 | ++timr->it_requeue_pending; | ||
399 | 325 | ||
400 | info->si_overrun += timr->it_overrun_last; | 326 | info->si_overrun += timr->it_overrun_last; |
401 | } | 327 | } |
402 | 328 | ||
403 | if (timr) | 329 | unlock_timer(timr, flags); |
404 | unlock_timer(timr, flags); | ||
405 | } | 330 | } |
406 | 331 | ||
407 | int posix_timer_event(struct k_itimer *timr, int si_private) | 332 | int posix_timer_event(struct k_itimer *timr, int si_private) |
@@ -410,12 +335,12 @@ int posix_timer_event(struct k_itimer *timr, int si_private) | |||
410 | int shared, ret = -1; | 335 | int shared, ret = -1; |
411 | /* | 336 | /* |
412 | * FIXME: if ->sigq is queued we can race with | 337 | * FIXME: if ->sigq is queued we can race with |
413 | * dequeue_signal()->do_schedule_next_timer(). | 338 | * dequeue_signal()->posixtimer_rearm(). |
414 | * | 339 | * |
415 | * If dequeue_signal() sees the "right" value of | 340 | * If dequeue_signal() sees the "right" value of |
416 | * si_sys_private it calls do_schedule_next_timer(). | 341 | * si_sys_private it calls posixtimer_rearm(). |
417 | * We re-queue ->sigq and drop ->it_lock(). | 342 | * We re-queue ->sigq and drop ->it_lock(). |
418 | * do_schedule_next_timer() locks the timer | 343 | * posixtimer_rearm() locks the timer |
419 | * and re-schedules it while ->sigq is pending. | 344 | * and re-schedules it while ->sigq is pending. |
420 | * Not really bad, but not that we want. | 345 | * Not really bad, but not that we want. |
421 | */ | 346 | */ |
@@ -431,7 +356,6 @@ int posix_timer_event(struct k_itimer *timr, int si_private) | |||
431 | /* If we failed to send the signal the timer stops. */ | 356 | /* If we failed to send the signal the timer stops. */ |
432 | return ret > 0; | 357 | return ret > 0; |
433 | } | 358 | } |
434 | EXPORT_SYMBOL_GPL(posix_timer_event); | ||
435 | 359 | ||
436 | /* | 360 | /* |
437 | * This function gets called when a POSIX.1b interval timer expires. It | 361 | * This function gets called when a POSIX.1b interval timer expires. It |
@@ -450,7 +374,8 @@ static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) | |||
450 | timr = container_of(timer, struct k_itimer, it.real.timer); | 374 | timr = container_of(timer, struct k_itimer, it.real.timer); |
451 | spin_lock_irqsave(&timr->it_lock, flags); | 375 | spin_lock_irqsave(&timr->it_lock, flags); |
452 | 376 | ||
453 | if (timr->it.real.interval != 0) | 377 | timr->it_active = 0; |
378 | if (timr->it_interval != 0) | ||
454 | si_private = ++timr->it_requeue_pending; | 379 | si_private = ++timr->it_requeue_pending; |
455 | 380 | ||
456 | if (posix_timer_event(timr, si_private)) { | 381 | if (posix_timer_event(timr, si_private)) { |
@@ -459,7 +384,7 @@ static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) | |||
459 | * we will not get a call back to restart it AND | 384 | * we will not get a call back to restart it AND |
460 | * it should be restarted. | 385 | * it should be restarted. |
461 | */ | 386 | */ |
462 | if (timr->it.real.interval != 0) { | 387 | if (timr->it_interval != 0) { |
463 | ktime_t now = hrtimer_cb_get_time(timer); | 388 | ktime_t now = hrtimer_cb_get_time(timer); |
464 | 389 | ||
465 | /* | 390 | /* |
@@ -488,15 +413,16 @@ static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) | |||
488 | { | 413 | { |
489 | ktime_t kj = NSEC_PER_SEC / HZ; | 414 | ktime_t kj = NSEC_PER_SEC / HZ; |
490 | 415 | ||
491 | if (timr->it.real.interval < kj) | 416 | if (timr->it_interval < kj) |
492 | now = ktime_add(now, kj); | 417 | now = ktime_add(now, kj); |
493 | } | 418 | } |
494 | #endif | 419 | #endif |
495 | timr->it_overrun += (unsigned int) | 420 | timr->it_overrun += (unsigned int) |
496 | hrtimer_forward(timer, now, | 421 | hrtimer_forward(timer, now, |
497 | timr->it.real.interval); | 422 | timr->it_interval); |
498 | ret = HRTIMER_RESTART; | 423 | ret = HRTIMER_RESTART; |
499 | ++timr->it_requeue_pending; | 424 | ++timr->it_requeue_pending; |
425 | timr->it_active = 1; | ||
500 | } | 426 | } |
501 | } | 427 | } |
502 | 428 | ||
@@ -521,30 +447,6 @@ static struct pid *good_sigevent(sigevent_t * event) | |||
521 | return task_pid(rtn); | 447 | return task_pid(rtn); |
522 | } | 448 | } |
523 | 449 | ||
524 | void posix_timers_register_clock(const clockid_t clock_id, | ||
525 | struct k_clock *new_clock) | ||
526 | { | ||
527 | if ((unsigned) clock_id >= MAX_CLOCKS) { | ||
528 | printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n", | ||
529 | clock_id); | ||
530 | return; | ||
531 | } | ||
532 | |||
533 | if (!new_clock->clock_get) { | ||
534 | printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n", | ||
535 | clock_id); | ||
536 | return; | ||
537 | } | ||
538 | if (!new_clock->clock_getres) { | ||
539 | printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n", | ||
540 | clock_id); | ||
541 | return; | ||
542 | } | ||
543 | |||
544 | posix_clocks[clock_id] = *new_clock; | ||
545 | } | ||
546 | EXPORT_SYMBOL_GPL(posix_timers_register_clock); | ||
547 | |||
548 | static struct k_itimer * alloc_posix_timer(void) | 450 | static struct k_itimer * alloc_posix_timer(void) |
549 | { | 451 | { |
550 | struct k_itimer *tmr; | 452 | struct k_itimer *tmr; |
@@ -581,17 +483,6 @@ static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | |||
581 | call_rcu(&tmr->it.rcu, k_itimer_rcu_free); | 483 | call_rcu(&tmr->it.rcu, k_itimer_rcu_free); |
582 | } | 484 | } |
583 | 485 | ||
584 | static struct k_clock *clockid_to_kclock(const clockid_t id) | ||
585 | { | ||
586 | if (id < 0) | ||
587 | return (id & CLOCKFD_MASK) == CLOCKFD ? | ||
588 | &clock_posix_dynamic : &clock_posix_cpu; | ||
589 | |||
590 | if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres) | ||
591 | return NULL; | ||
592 | return &posix_clocks[id]; | ||
593 | } | ||
594 | |||
595 | static int common_timer_create(struct k_itimer *new_timer) | 486 | static int common_timer_create(struct k_itimer *new_timer) |
596 | { | 487 | { |
597 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); | 488 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); |
@@ -599,15 +490,12 @@ static int common_timer_create(struct k_itimer *new_timer) | |||
599 | } | 490 | } |
600 | 491 | ||
601 | /* Create a POSIX.1b interval timer. */ | 492 | /* Create a POSIX.1b interval timer. */ |
602 | 493 | static int do_timer_create(clockid_t which_clock, struct sigevent *event, | |
603 | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, | 494 | timer_t __user *created_timer_id) |
604 | struct sigevent __user *, timer_event_spec, | ||
605 | timer_t __user *, created_timer_id) | ||
606 | { | 495 | { |
607 | struct k_clock *kc = clockid_to_kclock(which_clock); | 496 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
608 | struct k_itimer *new_timer; | 497 | struct k_itimer *new_timer; |
609 | int error, new_timer_id; | 498 | int error, new_timer_id; |
610 | sigevent_t event; | ||
611 | int it_id_set = IT_ID_NOT_SET; | 499 | int it_id_set = IT_ID_NOT_SET; |
612 | 500 | ||
613 | if (!kc) | 501 | if (!kc) |
@@ -629,31 +517,28 @@ SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, | |||
629 | it_id_set = IT_ID_SET; | 517 | it_id_set = IT_ID_SET; |
630 | new_timer->it_id = (timer_t) new_timer_id; | 518 | new_timer->it_id = (timer_t) new_timer_id; |
631 | new_timer->it_clock = which_clock; | 519 | new_timer->it_clock = which_clock; |
520 | new_timer->kclock = kc; | ||
632 | new_timer->it_overrun = -1; | 521 | new_timer->it_overrun = -1; |
633 | 522 | ||
634 | if (timer_event_spec) { | 523 | if (event) { |
635 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) { | ||
636 | error = -EFAULT; | ||
637 | goto out; | ||
638 | } | ||
639 | rcu_read_lock(); | 524 | rcu_read_lock(); |
640 | new_timer->it_pid = get_pid(good_sigevent(&event)); | 525 | new_timer->it_pid = get_pid(good_sigevent(event)); |
641 | rcu_read_unlock(); | 526 | rcu_read_unlock(); |
642 | if (!new_timer->it_pid) { | 527 | if (!new_timer->it_pid) { |
643 | error = -EINVAL; | 528 | error = -EINVAL; |
644 | goto out; | 529 | goto out; |
645 | } | 530 | } |
531 | new_timer->it_sigev_notify = event->sigev_notify; | ||
532 | new_timer->sigq->info.si_signo = event->sigev_signo; | ||
533 | new_timer->sigq->info.si_value = event->sigev_value; | ||
646 | } else { | 534 | } else { |
647 | memset(&event.sigev_value, 0, sizeof(event.sigev_value)); | 535 | new_timer->it_sigev_notify = SIGEV_SIGNAL; |
648 | event.sigev_notify = SIGEV_SIGNAL; | 536 | new_timer->sigq->info.si_signo = SIGALRM; |
649 | event.sigev_signo = SIGALRM; | 537 | memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); |
650 | event.sigev_value.sival_int = new_timer->it_id; | 538 | new_timer->sigq->info.si_value.sival_int = new_timer->it_id; |
651 | new_timer->it_pid = get_pid(task_tgid(current)); | 539 | new_timer->it_pid = get_pid(task_tgid(current)); |
652 | } | 540 | } |
653 | 541 | ||
654 | new_timer->it_sigev_notify = event.sigev_notify; | ||
655 | new_timer->sigq->info.si_signo = event.sigev_signo; | ||
656 | new_timer->sigq->info.si_value = event.sigev_value; | ||
657 | new_timer->sigq->info.si_tid = new_timer->it_id; | 542 | new_timer->sigq->info.si_tid = new_timer->it_id; |
658 | new_timer->sigq->info.si_code = SI_TIMER; | 543 | new_timer->sigq->info.si_code = SI_TIMER; |
659 | 544 | ||
@@ -684,6 +569,36 @@ out: | |||
684 | return error; | 569 | return error; |
685 | } | 570 | } |
686 | 571 | ||
572 | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, | ||
573 | struct sigevent __user *, timer_event_spec, | ||
574 | timer_t __user *, created_timer_id) | ||
575 | { | ||
576 | if (timer_event_spec) { | ||
577 | sigevent_t event; | ||
578 | |||
579 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) | ||
580 | return -EFAULT; | ||
581 | return do_timer_create(which_clock, &event, created_timer_id); | ||
582 | } | ||
583 | return do_timer_create(which_clock, NULL, created_timer_id); | ||
584 | } | ||
585 | |||
586 | #ifdef CONFIG_COMPAT | ||
587 | COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, | ||
588 | struct compat_sigevent __user *, timer_event_spec, | ||
589 | timer_t __user *, created_timer_id) | ||
590 | { | ||
591 | if (timer_event_spec) { | ||
592 | sigevent_t event; | ||
593 | |||
594 | if (get_compat_sigevent(&event, timer_event_spec)) | ||
595 | return -EFAULT; | ||
596 | return do_timer_create(which_clock, &event, created_timer_id); | ||
597 | } | ||
598 | return do_timer_create(which_clock, NULL, created_timer_id); | ||
599 | } | ||
600 | #endif | ||
601 | |||
687 | /* | 602 | /* |
688 | * Locking issues: We need to protect the result of the id look up until | 603 | * Locking issues: We need to protect the result of the id look up until |
689 | * we get the timer locked down so it is not deleted under us. The | 604 | * we get the timer locked down so it is not deleted under us. The |
@@ -717,6 +632,20 @@ static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) | |||
717 | return NULL; | 632 | return NULL; |
718 | } | 633 | } |
719 | 634 | ||
635 | static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) | ||
636 | { | ||
637 | struct hrtimer *timer = &timr->it.real.timer; | ||
638 | |||
639 | return __hrtimer_expires_remaining_adjusted(timer, now); | ||
640 | } | ||
641 | |||
642 | static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now) | ||
643 | { | ||
644 | struct hrtimer *timer = &timr->it.real.timer; | ||
645 | |||
646 | return (int)hrtimer_forward(timer, now, timr->it_interval); | ||
647 | } | ||
648 | |||
720 | /* | 649 | /* |
721 | * Get the time remaining on a POSIX.1b interval timer. This function | 650 | * Get the time remaining on a POSIX.1b interval timer. This function |
722 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not | 651 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not |
@@ -733,55 +662,61 @@ static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) | |||
733 | * it is the same as a requeue pending timer WRT to what we should | 662 | * it is the same as a requeue pending timer WRT to what we should |
734 | * report. | 663 | * report. |
735 | */ | 664 | */ |
736 | static void | 665 | void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) |
737 | common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) | ||
738 | { | 666 | { |
667 | const struct k_clock *kc = timr->kclock; | ||
739 | ktime_t now, remaining, iv; | 668 | ktime_t now, remaining, iv; |
740 | struct hrtimer *timer = &timr->it.real.timer; | 669 | struct timespec64 ts64; |
670 | bool sig_none; | ||
741 | 671 | ||
742 | memset(cur_setting, 0, sizeof(*cur_setting)); | 672 | sig_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE; |
743 | 673 | iv = timr->it_interval; | |
744 | iv = timr->it.real.interval; | ||
745 | 674 | ||
746 | /* interval timer ? */ | 675 | /* interval timer ? */ |
747 | if (iv) | 676 | if (iv) { |
748 | cur_setting->it_interval = ktime_to_timespec64(iv); | 677 | cur_setting->it_interval = ktime_to_timespec64(iv); |
749 | else if (!hrtimer_active(timer) && | 678 | } else if (!timr->it_active) { |
750 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | 679 | /* |
751 | return; | 680 | * SIGEV_NONE oneshot timers are never queued. Check them |
681 | * below. | ||
682 | */ | ||
683 | if (!sig_none) | ||
684 | return; | ||
685 | } | ||
752 | 686 | ||
753 | now = timer->base->get_time(); | 687 | /* |
688 | * The timespec64 based conversion is suboptimal, but it's not | ||
689 | * worth to implement yet another callback. | ||
690 | */ | ||
691 | kc->clock_get(timr->it_clock, &ts64); | ||
692 | now = timespec64_to_ktime(ts64); | ||
754 | 693 | ||
755 | /* | 694 | /* |
756 | * When a requeue is pending or this is a SIGEV_NONE | 695 | * When a requeue is pending or this is a SIGEV_NONE timer move the |
757 | * timer move the expiry time forward by intervals, so | 696 | * expiry time forward by intervals, so expiry is > now. |
758 | * expiry is > now. | ||
759 | */ | 697 | */ |
760 | if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || | 698 | if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) |
761 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) | 699 | timr->it_overrun += kc->timer_forward(timr, now); |
762 | timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); | ||
763 | 700 | ||
764 | remaining = __hrtimer_expires_remaining_adjusted(timer, now); | 701 | remaining = kc->timer_remaining(timr, now); |
765 | /* Return 0 only, when the timer is expired and not pending */ | 702 | /* Return 0 only, when the timer is expired and not pending */ |
766 | if (remaining <= 0) { | 703 | if (remaining <= 0) { |
767 | /* | 704 | /* |
768 | * A single shot SIGEV_NONE timer must return 0, when | 705 | * A single shot SIGEV_NONE timer must return 0, when |
769 | * it is expired ! | 706 | * it is expired ! |
770 | */ | 707 | */ |
771 | if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | 708 | if (!sig_none) |
772 | cur_setting->it_value.tv_nsec = 1; | 709 | cur_setting->it_value.tv_nsec = 1; |
773 | } else | 710 | } else { |
774 | cur_setting->it_value = ktime_to_timespec64(remaining); | 711 | cur_setting->it_value = ktime_to_timespec64(remaining); |
712 | } | ||
775 | } | 713 | } |
776 | 714 | ||
777 | /* Get the time remaining on a POSIX.1b interval timer. */ | 715 | /* Get the time remaining on a POSIX.1b interval timer. */ |
778 | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, | 716 | static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) |
779 | struct itimerspec __user *, setting) | ||
780 | { | 717 | { |
781 | struct itimerspec64 cur_setting64; | ||
782 | struct itimerspec cur_setting; | ||
783 | struct k_itimer *timr; | 718 | struct k_itimer *timr; |
784 | struct k_clock *kc; | 719 | const struct k_clock *kc; |
785 | unsigned long flags; | 720 | unsigned long flags; |
786 | int ret = 0; | 721 | int ret = 0; |
787 | 722 | ||
@@ -789,20 +724,49 @@ SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, | |||
789 | if (!timr) | 724 | if (!timr) |
790 | return -EINVAL; | 725 | return -EINVAL; |
791 | 726 | ||
792 | kc = clockid_to_kclock(timr->it_clock); | 727 | memset(setting, 0, sizeof(*setting)); |
728 | kc = timr->kclock; | ||
793 | if (WARN_ON_ONCE(!kc || !kc->timer_get)) | 729 | if (WARN_ON_ONCE(!kc || !kc->timer_get)) |
794 | ret = -EINVAL; | 730 | ret = -EINVAL; |
795 | else | 731 | else |
796 | kc->timer_get(timr, &cur_setting64); | 732 | kc->timer_get(timr, setting); |
797 | 733 | ||
798 | unlock_timer(timr, flags); | 734 | unlock_timer(timr, flags); |
735 | return ret; | ||
736 | } | ||
799 | 737 | ||
800 | cur_setting = itimerspec64_to_itimerspec(&cur_setting64); | 738 | /* Get the time remaining on a POSIX.1b interval timer. */ |
801 | if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting))) | 739 | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, |
802 | return -EFAULT; | 740 | struct itimerspec __user *, setting) |
741 | { | ||
742 | struct itimerspec64 cur_setting64; | ||
803 | 743 | ||
744 | int ret = do_timer_gettime(timer_id, &cur_setting64); | ||
745 | if (!ret) { | ||
746 | struct itimerspec cur_setting; | ||
747 | cur_setting = itimerspec64_to_itimerspec(&cur_setting64); | ||
748 | if (copy_to_user(setting, &cur_setting, sizeof (cur_setting))) | ||
749 | ret = -EFAULT; | ||
750 | } | ||
751 | return ret; | ||
752 | } | ||
753 | |||
754 | #ifdef CONFIG_COMPAT | ||
755 | COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, | ||
756 | struct compat_itimerspec __user *, setting) | ||
757 | { | ||
758 | struct itimerspec64 cur_setting64; | ||
759 | |||
760 | int ret = do_timer_gettime(timer_id, &cur_setting64); | ||
761 | if (!ret) { | ||
762 | struct itimerspec cur_setting; | ||
763 | cur_setting = itimerspec64_to_itimerspec(&cur_setting64); | ||
764 | if (put_compat_itimerspec(setting, &cur_setting)) | ||
765 | ret = -EFAULT; | ||
766 | } | ||
804 | return ret; | 767 | return ret; |
805 | } | 768 | } |
769 | #endif | ||
806 | 770 | ||
807 | /* | 771 | /* |
808 | * Get the number of overruns of a POSIX.1b interval timer. This is to | 772 | * Get the number of overruns of a POSIX.1b interval timer. This is to |
@@ -810,7 +774,7 @@ SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, | |||
810 | * accumulating overruns on the next timer. The overrun is frozen when | 774 | * accumulating overruns on the next timer. The overrun is frozen when |
811 | * the signal is delivered, either at the notify time (if the info block | 775 | * the signal is delivered, either at the notify time (if the info block |
812 | * is not queued) or at the actual delivery time (as we are informed by | 776 | * is not queued) or at the actual delivery time (as we are informed by |
813 | * the call back to do_schedule_next_timer(). So all we need to do is | 777 | * the call back to posixtimer_rearm(). So all we need to do is |
814 | * to pick up the frozen overrun. | 778 | * to pick up the frozen overrun. |
815 | */ | 779 | */ |
816 | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) | 780 | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
@@ -829,117 +793,183 @@ SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) | |||
829 | return overrun; | 793 | return overrun; |
830 | } | 794 | } |
831 | 795 | ||
832 | /* Set a POSIX.1b interval timer. */ | 796 | static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, |
833 | /* timr->it_lock is taken. */ | 797 | bool absolute, bool sigev_none) |
834 | static int | ||
835 | common_timer_set(struct k_itimer *timr, int flags, | ||
836 | struct itimerspec64 *new_setting, struct itimerspec64 *old_setting) | ||
837 | { | 798 | { |
838 | struct hrtimer *timer = &timr->it.real.timer; | 799 | struct hrtimer *timer = &timr->it.real.timer; |
839 | enum hrtimer_mode mode; | 800 | enum hrtimer_mode mode; |
840 | 801 | ||
802 | mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; | ||
803 | /* | ||
804 | * Posix magic: Relative CLOCK_REALTIME timers are not affected by | ||
805 | * clock modifications, so they become CLOCK_MONOTONIC based under the | ||
806 | * hood. See hrtimer_init(). Update timr->kclock, so the generic | ||
807 | * functions which use timr->kclock->clock_get() work. | ||
808 | * | ||
809 | * Note: it_clock stays unmodified, because the next timer_set() might | ||
810 | * use ABSTIME, so it needs to switch back. | ||
811 | */ | ||
812 | if (timr->it_clock == CLOCK_REALTIME) | ||
813 | timr->kclock = absolute ? &clock_realtime : &clock_monotonic; | ||
814 | |||
815 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); | ||
816 | timr->it.real.timer.function = posix_timer_fn; | ||
817 | |||
818 | if (!absolute) | ||
819 | expires = ktime_add_safe(expires, timer->base->get_time()); | ||
820 | hrtimer_set_expires(timer, expires); | ||
821 | |||
822 | if (!sigev_none) | ||
823 | hrtimer_start_expires(timer, HRTIMER_MODE_ABS); | ||
824 | } | ||
825 | |||
826 | static int common_hrtimer_try_to_cancel(struct k_itimer *timr) | ||
827 | { | ||
828 | return hrtimer_try_to_cancel(&timr->it.real.timer); | ||
829 | } | ||
830 | |||
831 | /* Set a POSIX.1b interval timer. */ | ||
832 | int common_timer_set(struct k_itimer *timr, int flags, | ||
833 | struct itimerspec64 *new_setting, | ||
834 | struct itimerspec64 *old_setting) | ||
835 | { | ||
836 | const struct k_clock *kc = timr->kclock; | ||
837 | bool sigev_none; | ||
838 | ktime_t expires; | ||
839 | |||
841 | if (old_setting) | 840 | if (old_setting) |
842 | common_timer_get(timr, old_setting); | 841 | common_timer_get(timr, old_setting); |
843 | 842 | ||
844 | /* disable the timer */ | 843 | /* Prevent rearming by clearing the interval */ |
845 | timr->it.real.interval = 0; | 844 | timr->it_interval = 0; |
846 | /* | 845 | /* |
847 | * careful here. If smp we could be in the "fire" routine which will | 846 | * Careful here. On SMP systems the timer expiry function could be |
848 | * be spinning as we hold the lock. But this is ONLY an SMP issue. | 847 | * active and spinning on timr->it_lock. |
849 | */ | 848 | */ |
850 | if (hrtimer_try_to_cancel(timer) < 0) | 849 | if (kc->timer_try_to_cancel(timr) < 0) |
851 | return TIMER_RETRY; | 850 | return TIMER_RETRY; |
852 | 851 | ||
853 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | 852 | timr->it_active = 0; |
853 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | ||
854 | ~REQUEUE_PENDING; | 854 | ~REQUEUE_PENDING; |
855 | timr->it_overrun_last = 0; | 855 | timr->it_overrun_last = 0; |
856 | 856 | ||
857 | /* switch off the timer when it_value is zero */ | 857 | /* Switch off the timer when it_value is zero */ |
858 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) | 858 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) |
859 | return 0; | 859 | return 0; |
860 | 860 | ||
861 | mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; | 861 | timr->it_interval = timespec64_to_ktime(new_setting->it_interval); |
862 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); | 862 | expires = timespec64_to_ktime(new_setting->it_value); |
863 | timr->it.real.timer.function = posix_timer_fn; | 863 | sigev_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE; |
864 | |||
865 | hrtimer_set_expires(timer, timespec64_to_ktime(new_setting->it_value)); | ||
866 | |||
867 | /* Convert interval */ | ||
868 | timr->it.real.interval = timespec64_to_ktime(new_setting->it_interval); | ||
869 | |||
870 | /* SIGEV_NONE timers are not queued ! See common_timer_get */ | ||
871 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { | ||
872 | /* Setup correct expiry time for relative timers */ | ||
873 | if (mode == HRTIMER_MODE_REL) { | ||
874 | hrtimer_add_expires(timer, timer->base->get_time()); | ||
875 | } | ||
876 | return 0; | ||
877 | } | ||
878 | 864 | ||
879 | hrtimer_start_expires(timer, mode); | 865 | kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); |
866 | timr->it_active = !sigev_none; | ||
880 | return 0; | 867 | return 0; |
881 | } | 868 | } |
882 | 869 | ||
883 | /* Set a POSIX.1b interval timer */ | 870 | static int do_timer_settime(timer_t timer_id, int flags, |
884 | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, | 871 | struct itimerspec64 *new_spec64, |
885 | const struct itimerspec __user *, new_setting, | 872 | struct itimerspec64 *old_spec64) |
886 | struct itimerspec __user *, old_setting) | ||
887 | { | 873 | { |
888 | struct itimerspec64 new_spec64, old_spec64; | 874 | const struct k_clock *kc; |
889 | struct itimerspec64 *rtn = old_setting ? &old_spec64 : NULL; | ||
890 | struct itimerspec new_spec, old_spec; | ||
891 | struct k_itimer *timr; | 875 | struct k_itimer *timr; |
892 | unsigned long flag; | 876 | unsigned long flag; |
893 | struct k_clock *kc; | ||
894 | int error = 0; | 877 | int error = 0; |
895 | 878 | ||
896 | if (!new_setting) | 879 | if (!timespec64_valid(&new_spec64->it_interval) || |
880 | !timespec64_valid(&new_spec64->it_value)) | ||
897 | return -EINVAL; | 881 | return -EINVAL; |
898 | 882 | ||
899 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | 883 | if (old_spec64) |
900 | return -EFAULT; | 884 | memset(old_spec64, 0, sizeof(*old_spec64)); |
901 | new_spec64 = itimerspec_to_itimerspec64(&new_spec); | ||
902 | |||
903 | if (!timespec64_valid(&new_spec64.it_interval) || | ||
904 | !timespec64_valid(&new_spec64.it_value)) | ||
905 | return -EINVAL; | ||
906 | retry: | 885 | retry: |
907 | timr = lock_timer(timer_id, &flag); | 886 | timr = lock_timer(timer_id, &flag); |
908 | if (!timr) | 887 | if (!timr) |
909 | return -EINVAL; | 888 | return -EINVAL; |
910 | 889 | ||
911 | kc = clockid_to_kclock(timr->it_clock); | 890 | kc = timr->kclock; |
912 | if (WARN_ON_ONCE(!kc || !kc->timer_set)) | 891 | if (WARN_ON_ONCE(!kc || !kc->timer_set)) |
913 | error = -EINVAL; | 892 | error = -EINVAL; |
914 | else | 893 | else |
915 | error = kc->timer_set(timr, flags, &new_spec64, rtn); | 894 | error = kc->timer_set(timr, flags, new_spec64, old_spec64); |
916 | 895 | ||
917 | unlock_timer(timr, flag); | 896 | unlock_timer(timr, flag); |
918 | if (error == TIMER_RETRY) { | 897 | if (error == TIMER_RETRY) { |
919 | rtn = NULL; // We already got the old time... | 898 | old_spec64 = NULL; // We already got the old time... |
920 | goto retry; | 899 | goto retry; |
921 | } | 900 | } |
922 | 901 | ||
923 | old_spec = itimerspec64_to_itimerspec(&old_spec64); | 902 | return error; |
924 | if (old_setting && !error && | 903 | } |
925 | copy_to_user(old_setting, &old_spec, sizeof (old_spec))) | 904 | |
926 | error = -EFAULT; | 905 | /* Set a POSIX.1b interval timer */ |
906 | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, | ||
907 | const struct itimerspec __user *, new_setting, | ||
908 | struct itimerspec __user *, old_setting) | ||
909 | { | ||
910 | struct itimerspec64 new_spec64, old_spec64; | ||
911 | struct itimerspec64 *rtn = old_setting ? &old_spec64 : NULL; | ||
912 | struct itimerspec new_spec; | ||
913 | int error = 0; | ||
914 | |||
915 | if (!new_setting) | ||
916 | return -EINVAL; | ||
917 | |||
918 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | ||
919 | return -EFAULT; | ||
920 | new_spec64 = itimerspec_to_itimerspec64(&new_spec); | ||
921 | |||
922 | error = do_timer_settime(timer_id, flags, &new_spec64, rtn); | ||
923 | if (!error && old_setting) { | ||
924 | struct itimerspec old_spec; | ||
925 | old_spec = itimerspec64_to_itimerspec(&old_spec64); | ||
926 | if (copy_to_user(old_setting, &old_spec, sizeof (old_spec))) | ||
927 | error = -EFAULT; | ||
928 | } | ||
929 | return error; | ||
930 | } | ||
931 | |||
932 | #ifdef CONFIG_COMPAT | ||
933 | COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, | ||
934 | struct compat_itimerspec __user *, new, | ||
935 | struct compat_itimerspec __user *, old) | ||
936 | { | ||
937 | struct itimerspec64 new_spec64, old_spec64; | ||
938 | struct itimerspec64 *rtn = old ? &old_spec64 : NULL; | ||
939 | struct itimerspec new_spec; | ||
940 | int error = 0; | ||
941 | |||
942 | if (!new) | ||
943 | return -EINVAL; | ||
944 | if (get_compat_itimerspec(&new_spec, new)) | ||
945 | return -EFAULT; | ||
927 | 946 | ||
947 | new_spec64 = itimerspec_to_itimerspec64(&new_spec); | ||
948 | error = do_timer_settime(timer_id, flags, &new_spec64, rtn); | ||
949 | if (!error && old) { | ||
950 | struct itimerspec old_spec; | ||
951 | old_spec = itimerspec64_to_itimerspec(&old_spec64); | ||
952 | if (put_compat_itimerspec(old, &old_spec)) | ||
953 | error = -EFAULT; | ||
954 | } | ||
928 | return error; | 955 | return error; |
929 | } | 956 | } |
957 | #endif | ||
930 | 958 | ||
931 | static int common_timer_del(struct k_itimer *timer) | 959 | int common_timer_del(struct k_itimer *timer) |
932 | { | 960 | { |
933 | timer->it.real.interval = 0; | 961 | const struct k_clock *kc = timer->kclock; |
934 | 962 | ||
935 | if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) | 963 | timer->it_interval = 0; |
964 | if (kc->timer_try_to_cancel(timer) < 0) | ||
936 | return TIMER_RETRY; | 965 | return TIMER_RETRY; |
966 | timer->it_active = 0; | ||
937 | return 0; | 967 | return 0; |
938 | } | 968 | } |
939 | 969 | ||
940 | static inline int timer_delete_hook(struct k_itimer *timer) | 970 | static inline int timer_delete_hook(struct k_itimer *timer) |
941 | { | 971 | { |
942 | struct k_clock *kc = clockid_to_kclock(timer->it_clock); | 972 | const struct k_clock *kc = timer->kclock; |
943 | 973 | ||
944 | if (WARN_ON_ONCE(!kc || !kc->timer_del)) | 974 | if (WARN_ON_ONCE(!kc || !kc->timer_del)) |
945 | return -EINVAL; | 975 | return -EINVAL; |
@@ -1018,7 +1048,7 @@ void exit_itimers(struct signal_struct *sig) | |||
1018 | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, | 1048 | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, |
1019 | const struct timespec __user *, tp) | 1049 | const struct timespec __user *, tp) |
1020 | { | 1050 | { |
1021 | struct k_clock *kc = clockid_to_kclock(which_clock); | 1051 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
1022 | struct timespec64 new_tp64; | 1052 | struct timespec64 new_tp64; |
1023 | struct timespec new_tp; | 1053 | struct timespec new_tp; |
1024 | 1054 | ||
@@ -1035,7 +1065,7 @@ SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, | |||
1035 | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, | 1065 | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, |
1036 | struct timespec __user *,tp) | 1066 | struct timespec __user *,tp) |
1037 | { | 1067 | { |
1038 | struct k_clock *kc = clockid_to_kclock(which_clock); | 1068 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
1039 | struct timespec64 kernel_tp64; | 1069 | struct timespec64 kernel_tp64; |
1040 | struct timespec kernel_tp; | 1070 | struct timespec kernel_tp; |
1041 | int error; | 1071 | int error; |
@@ -1055,7 +1085,7 @@ SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, | |||
1055 | SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, | 1085 | SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, |
1056 | struct timex __user *, utx) | 1086 | struct timex __user *, utx) |
1057 | { | 1087 | { |
1058 | struct k_clock *kc = clockid_to_kclock(which_clock); | 1088 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
1059 | struct timex ktx; | 1089 | struct timex ktx; |
1060 | int err; | 1090 | int err; |
1061 | 1091 | ||
@@ -1078,7 +1108,7 @@ SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, | |||
1078 | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, | 1108 | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, |
1079 | struct timespec __user *, tp) | 1109 | struct timespec __user *, tp) |
1080 | { | 1110 | { |
1081 | struct k_clock *kc = clockid_to_kclock(which_clock); | 1111 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
1082 | struct timespec64 rtn_tp64; | 1112 | struct timespec64 rtn_tp64; |
1083 | struct timespec rtn_tp; | 1113 | struct timespec rtn_tp; |
1084 | int error; | 1114 | int error; |
@@ -1095,13 +1125,98 @@ SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, | |||
1095 | return error; | 1125 | return error; |
1096 | } | 1126 | } |
1097 | 1127 | ||
1128 | #ifdef CONFIG_COMPAT | ||
1129 | |||
1130 | COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock, | ||
1131 | struct compat_timespec __user *, tp) | ||
1132 | { | ||
1133 | const struct k_clock *kc = clockid_to_kclock(which_clock); | ||
1134 | struct timespec64 new_tp64; | ||
1135 | struct timespec new_tp; | ||
1136 | |||
1137 | if (!kc || !kc->clock_set) | ||
1138 | return -EINVAL; | ||
1139 | |||
1140 | if (compat_get_timespec(&new_tp, tp)) | ||
1141 | return -EFAULT; | ||
1142 | |||
1143 | new_tp64 = timespec_to_timespec64(new_tp); | ||
1144 | |||
1145 | return kc->clock_set(which_clock, &new_tp64); | ||
1146 | } | ||
1147 | |||
1148 | COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock, | ||
1149 | struct compat_timespec __user *, tp) | ||
1150 | { | ||
1151 | const struct k_clock *kc = clockid_to_kclock(which_clock); | ||
1152 | struct timespec64 kernel_tp64; | ||
1153 | struct timespec kernel_tp; | ||
1154 | int error; | ||
1155 | |||
1156 | if (!kc) | ||
1157 | return -EINVAL; | ||
1158 | |||
1159 | error = kc->clock_get(which_clock, &kernel_tp64); | ||
1160 | kernel_tp = timespec64_to_timespec(kernel_tp64); | ||
1161 | |||
1162 | if (!error && compat_put_timespec(&kernel_tp, tp)) | ||
1163 | error = -EFAULT; | ||
1164 | |||
1165 | return error; | ||
1166 | } | ||
1167 | |||
1168 | COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock, | ||
1169 | struct compat_timex __user *, utp) | ||
1170 | { | ||
1171 | const struct k_clock *kc = clockid_to_kclock(which_clock); | ||
1172 | struct timex ktx; | ||
1173 | int err; | ||
1174 | |||
1175 | if (!kc) | ||
1176 | return -EINVAL; | ||
1177 | if (!kc->clock_adj) | ||
1178 | return -EOPNOTSUPP; | ||
1179 | |||
1180 | err = compat_get_timex(&ktx, utp); | ||
1181 | if (err) | ||
1182 | return err; | ||
1183 | |||
1184 | err = kc->clock_adj(which_clock, &ktx); | ||
1185 | |||
1186 | if (err >= 0) | ||
1187 | err = compat_put_timex(utp, &ktx); | ||
1188 | |||
1189 | return err; | ||
1190 | } | ||
1191 | |||
1192 | COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock, | ||
1193 | struct compat_timespec __user *, tp) | ||
1194 | { | ||
1195 | const struct k_clock *kc = clockid_to_kclock(which_clock); | ||
1196 | struct timespec64 rtn_tp64; | ||
1197 | struct timespec rtn_tp; | ||
1198 | int error; | ||
1199 | |||
1200 | if (!kc) | ||
1201 | return -EINVAL; | ||
1202 | |||
1203 | error = kc->clock_getres(which_clock, &rtn_tp64); | ||
1204 | rtn_tp = timespec64_to_timespec(rtn_tp64); | ||
1205 | |||
1206 | if (!error && tp && compat_put_timespec(&rtn_tp, tp)) | ||
1207 | error = -EFAULT; | ||
1208 | |||
1209 | return error; | ||
1210 | } | ||
1211 | #endif | ||
1212 | |||
1098 | /* | 1213 | /* |
1099 | * nanosleep for monotonic and realtime clocks | 1214 | * nanosleep for monotonic and realtime clocks |
1100 | */ | 1215 | */ |
1101 | static int common_nsleep(const clockid_t which_clock, int flags, | 1216 | static int common_nsleep(const clockid_t which_clock, int flags, |
1102 | struct timespec64 *tsave, struct timespec __user *rmtp) | 1217 | const struct timespec64 *rqtp) |
1103 | { | 1218 | { |
1104 | return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ? | 1219 | return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ? |
1105 | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, | 1220 | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, |
1106 | which_clock); | 1221 | which_clock); |
1107 | } | 1222 | } |
@@ -1110,7 +1225,7 @@ SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, | |||
1110 | const struct timespec __user *, rqtp, | 1225 | const struct timespec __user *, rqtp, |
1111 | struct timespec __user *, rmtp) | 1226 | struct timespec __user *, rmtp) |
1112 | { | 1227 | { |
1113 | struct k_clock *kc = clockid_to_kclock(which_clock); | 1228 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
1114 | struct timespec64 t64; | 1229 | struct timespec64 t64; |
1115 | struct timespec t; | 1230 | struct timespec t; |
1116 | 1231 | ||
@@ -1125,21 +1240,141 @@ SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, | |||
1125 | t64 = timespec_to_timespec64(t); | 1240 | t64 = timespec_to_timespec64(t); |
1126 | if (!timespec64_valid(&t64)) | 1241 | if (!timespec64_valid(&t64)) |
1127 | return -EINVAL; | 1242 | return -EINVAL; |
1243 | if (flags & TIMER_ABSTIME) | ||
1244 | rmtp = NULL; | ||
1245 | current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; | ||
1246 | current->restart_block.nanosleep.rmtp = rmtp; | ||
1128 | 1247 | ||
1129 | return kc->nsleep(which_clock, flags, &t64, rmtp); | 1248 | return kc->nsleep(which_clock, flags, &t64); |
1130 | } | 1249 | } |
1131 | 1250 | ||
1132 | /* | 1251 | #ifdef CONFIG_COMPAT |
1133 | * This will restart clock_nanosleep. This is required only by | 1252 | COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags, |
1134 | * compat_clock_nanosleep_restart for now. | 1253 | struct compat_timespec __user *, rqtp, |
1135 | */ | 1254 | struct compat_timespec __user *, rmtp) |
1136 | long clock_nanosleep_restart(struct restart_block *restart_block) | ||
1137 | { | 1255 | { |
1138 | clockid_t which_clock = restart_block->nanosleep.clockid; | 1256 | const struct k_clock *kc = clockid_to_kclock(which_clock); |
1139 | struct k_clock *kc = clockid_to_kclock(which_clock); | 1257 | struct timespec64 t64; |
1258 | struct timespec t; | ||
1140 | 1259 | ||
1141 | if (WARN_ON_ONCE(!kc || !kc->nsleep_restart)) | 1260 | if (!kc) |
1142 | return -EINVAL; | 1261 | return -EINVAL; |
1262 | if (!kc->nsleep) | ||
1263 | return -ENANOSLEEP_NOTSUP; | ||
1143 | 1264 | ||
1144 | return kc->nsleep_restart(restart_block); | 1265 | if (compat_get_timespec(&t, rqtp)) |
1266 | return -EFAULT; | ||
1267 | |||
1268 | t64 = timespec_to_timespec64(t); | ||
1269 | if (!timespec64_valid(&t64)) | ||
1270 | return -EINVAL; | ||
1271 | if (flags & TIMER_ABSTIME) | ||
1272 | rmtp = NULL; | ||
1273 | current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; | ||
1274 | current->restart_block.nanosleep.compat_rmtp = rmtp; | ||
1275 | |||
1276 | return kc->nsleep(which_clock, flags, &t64); | ||
1277 | } | ||
1278 | #endif | ||
1279 | |||
1280 | static const struct k_clock clock_realtime = { | ||
1281 | .clock_getres = posix_get_hrtimer_res, | ||
1282 | .clock_get = posix_clock_realtime_get, | ||
1283 | .clock_set = posix_clock_realtime_set, | ||
1284 | .clock_adj = posix_clock_realtime_adj, | ||
1285 | .nsleep = common_nsleep, | ||
1286 | .timer_create = common_timer_create, | ||
1287 | .timer_set = common_timer_set, | ||
1288 | .timer_get = common_timer_get, | ||
1289 | .timer_del = common_timer_del, | ||
1290 | .timer_rearm = common_hrtimer_rearm, | ||
1291 | .timer_forward = common_hrtimer_forward, | ||
1292 | .timer_remaining = common_hrtimer_remaining, | ||
1293 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, | ||
1294 | .timer_arm = common_hrtimer_arm, | ||
1295 | }; | ||
1296 | |||
1297 | static const struct k_clock clock_monotonic = { | ||
1298 | .clock_getres = posix_get_hrtimer_res, | ||
1299 | .clock_get = posix_ktime_get_ts, | ||
1300 | .nsleep = common_nsleep, | ||
1301 | .timer_create = common_timer_create, | ||
1302 | .timer_set = common_timer_set, | ||
1303 | .timer_get = common_timer_get, | ||
1304 | .timer_del = common_timer_del, | ||
1305 | .timer_rearm = common_hrtimer_rearm, | ||
1306 | .timer_forward = common_hrtimer_forward, | ||
1307 | .timer_remaining = common_hrtimer_remaining, | ||
1308 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, | ||
1309 | .timer_arm = common_hrtimer_arm, | ||
1310 | }; | ||
1311 | |||
1312 | static const struct k_clock clock_monotonic_raw = { | ||
1313 | .clock_getres = posix_get_hrtimer_res, | ||
1314 | .clock_get = posix_get_monotonic_raw, | ||
1315 | }; | ||
1316 | |||
1317 | static const struct k_clock clock_realtime_coarse = { | ||
1318 | .clock_getres = posix_get_coarse_res, | ||
1319 | .clock_get = posix_get_realtime_coarse, | ||
1320 | }; | ||
1321 | |||
1322 | static const struct k_clock clock_monotonic_coarse = { | ||
1323 | .clock_getres = posix_get_coarse_res, | ||
1324 | .clock_get = posix_get_monotonic_coarse, | ||
1325 | }; | ||
1326 | |||
1327 | static const struct k_clock clock_tai = { | ||
1328 | .clock_getres = posix_get_hrtimer_res, | ||
1329 | .clock_get = posix_get_tai, | ||
1330 | .nsleep = common_nsleep, | ||
1331 | .timer_create = common_timer_create, | ||
1332 | .timer_set = common_timer_set, | ||
1333 | .timer_get = common_timer_get, | ||
1334 | .timer_del = common_timer_del, | ||
1335 | .timer_rearm = common_hrtimer_rearm, | ||
1336 | .timer_forward = common_hrtimer_forward, | ||
1337 | .timer_remaining = common_hrtimer_remaining, | ||
1338 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, | ||
1339 | .timer_arm = common_hrtimer_arm, | ||
1340 | }; | ||
1341 | |||
1342 | static const struct k_clock clock_boottime = { | ||
1343 | .clock_getres = posix_get_hrtimer_res, | ||
1344 | .clock_get = posix_get_boottime, | ||
1345 | .nsleep = common_nsleep, | ||
1346 | .timer_create = common_timer_create, | ||
1347 | .timer_set = common_timer_set, | ||
1348 | .timer_get = common_timer_get, | ||
1349 | .timer_del = common_timer_del, | ||
1350 | .timer_rearm = common_hrtimer_rearm, | ||
1351 | .timer_forward = common_hrtimer_forward, | ||
1352 | .timer_remaining = common_hrtimer_remaining, | ||
1353 | .timer_try_to_cancel = common_hrtimer_try_to_cancel, | ||
1354 | .timer_arm = common_hrtimer_arm, | ||
1355 | }; | ||
1356 | |||
1357 | static const struct k_clock * const posix_clocks[] = { | ||
1358 | [CLOCK_REALTIME] = &clock_realtime, | ||
1359 | [CLOCK_MONOTONIC] = &clock_monotonic, | ||
1360 | [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, | ||
1361 | [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, | ||
1362 | [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, | ||
1363 | [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, | ||
1364 | [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, | ||
1365 | [CLOCK_BOOTTIME] = &clock_boottime, | ||
1366 | [CLOCK_REALTIME_ALARM] = &alarm_clock, | ||
1367 | [CLOCK_BOOTTIME_ALARM] = &alarm_clock, | ||
1368 | [CLOCK_TAI] = &clock_tai, | ||
1369 | }; | ||
1370 | |||
1371 | static const struct k_clock *clockid_to_kclock(const clockid_t id) | ||
1372 | { | ||
1373 | if (id < 0) | ||
1374 | return (id & CLOCKFD_MASK) == CLOCKFD ? | ||
1375 | &clock_posix_dynamic : &clock_posix_cpu; | ||
1376 | |||
1377 | if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id]) | ||
1378 | return NULL; | ||
1379 | return posix_clocks[id]; | ||
1145 | } | 1380 | } |