summaryrefslogtreecommitdiffstats
path: root/kernel/bpf/sockmap.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/bpf/sockmap.c')
-rw-r--r--kernel/bpf/sockmap.c2610
1 files changed, 0 insertions, 2610 deletions
diff --git a/kernel/bpf/sockmap.c b/kernel/bpf/sockmap.c
deleted file mode 100644
index de6f7a65c72b..000000000000
--- a/kernel/bpf/sockmap.c
+++ /dev/null
@@ -1,2610 +0,0 @@
1/* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 */
12
13/* A BPF sock_map is used to store sock objects. This is primarly used
14 * for doing socket redirect with BPF helper routines.
15 *
16 * A sock map may have BPF programs attached to it, currently a program
17 * used to parse packets and a program to provide a verdict and redirect
18 * decision on the packet are supported. Any programs attached to a sock
19 * map are inherited by sock objects when they are added to the map. If
20 * no BPF programs are attached the sock object may only be used for sock
21 * redirect.
22 *
23 * A sock object may be in multiple maps, but can only inherit a single
24 * parse or verdict program. If adding a sock object to a map would result
25 * in having multiple parsing programs the update will return an EBUSY error.
26 *
27 * For reference this program is similar to devmap used in XDP context
28 * reviewing these together may be useful. For an example please review
29 * ./samples/bpf/sockmap/.
30 */
31#include <linux/bpf.h>
32#include <net/sock.h>
33#include <linux/filter.h>
34#include <linux/errno.h>
35#include <linux/file.h>
36#include <linux/kernel.h>
37#include <linux/net.h>
38#include <linux/skbuff.h>
39#include <linux/workqueue.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <net/strparser.h>
43#include <net/tcp.h>
44#include <linux/ptr_ring.h>
45#include <net/inet_common.h>
46#include <linux/sched/signal.h>
47
48#define SOCK_CREATE_FLAG_MASK \
49 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
50
51struct bpf_sock_progs {
52 struct bpf_prog *bpf_tx_msg;
53 struct bpf_prog *bpf_parse;
54 struct bpf_prog *bpf_verdict;
55};
56
57struct bpf_stab {
58 struct bpf_map map;
59 struct sock **sock_map;
60 struct bpf_sock_progs progs;
61 raw_spinlock_t lock;
62};
63
64struct bucket {
65 struct hlist_head head;
66 raw_spinlock_t lock;
67};
68
69struct bpf_htab {
70 struct bpf_map map;
71 struct bucket *buckets;
72 atomic_t count;
73 u32 n_buckets;
74 u32 elem_size;
75 struct bpf_sock_progs progs;
76 struct rcu_head rcu;
77};
78
79struct htab_elem {
80 struct rcu_head rcu;
81 struct hlist_node hash_node;
82 u32 hash;
83 struct sock *sk;
84 char key[0];
85};
86
87enum smap_psock_state {
88 SMAP_TX_RUNNING,
89};
90
91struct smap_psock_map_entry {
92 struct list_head list;
93 struct bpf_map *map;
94 struct sock **entry;
95 struct htab_elem __rcu *hash_link;
96};
97
98struct smap_psock {
99 struct rcu_head rcu;
100 refcount_t refcnt;
101
102 /* datapath variables */
103 struct sk_buff_head rxqueue;
104 bool strp_enabled;
105
106 /* datapath error path cache across tx work invocations */
107 int save_rem;
108 int save_off;
109 struct sk_buff *save_skb;
110
111 /* datapath variables for tx_msg ULP */
112 struct sock *sk_redir;
113 int apply_bytes;
114 int cork_bytes;
115 int sg_size;
116 int eval;
117 struct sk_msg_buff *cork;
118 struct list_head ingress;
119
120 struct strparser strp;
121 struct bpf_prog *bpf_tx_msg;
122 struct bpf_prog *bpf_parse;
123 struct bpf_prog *bpf_verdict;
124 struct list_head maps;
125 spinlock_t maps_lock;
126
127 /* Back reference used when sock callback trigger sockmap operations */
128 struct sock *sock;
129 unsigned long state;
130
131 struct work_struct tx_work;
132 struct work_struct gc_work;
133
134 struct proto *sk_proto;
135 void (*save_unhash)(struct sock *sk);
136 void (*save_close)(struct sock *sk, long timeout);
137 void (*save_data_ready)(struct sock *sk);
138 void (*save_write_space)(struct sock *sk);
139};
140
141static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
142static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
143 int nonblock, int flags, int *addr_len);
144static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
145static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
146 int offset, size_t size, int flags);
147static void bpf_tcp_unhash(struct sock *sk);
148static void bpf_tcp_close(struct sock *sk, long timeout);
149
150static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
151{
152 return rcu_dereference_sk_user_data(sk);
153}
154
155static bool bpf_tcp_stream_read(const struct sock *sk)
156{
157 struct smap_psock *psock;
158 bool empty = true;
159
160 rcu_read_lock();
161 psock = smap_psock_sk(sk);
162 if (unlikely(!psock))
163 goto out;
164 empty = list_empty(&psock->ingress);
165out:
166 rcu_read_unlock();
167 return !empty;
168}
169
170enum {
171 SOCKMAP_IPV4,
172 SOCKMAP_IPV6,
173 SOCKMAP_NUM_PROTS,
174};
175
176enum {
177 SOCKMAP_BASE,
178 SOCKMAP_TX,
179 SOCKMAP_NUM_CONFIGS,
180};
181
182static struct proto *saved_tcpv6_prot __read_mostly;
183static DEFINE_SPINLOCK(tcpv6_prot_lock);
184static struct proto bpf_tcp_prots[SOCKMAP_NUM_PROTS][SOCKMAP_NUM_CONFIGS];
185
186static void build_protos(struct proto prot[SOCKMAP_NUM_CONFIGS],
187 struct proto *base)
188{
189 prot[SOCKMAP_BASE] = *base;
190 prot[SOCKMAP_BASE].unhash = bpf_tcp_unhash;
191 prot[SOCKMAP_BASE].close = bpf_tcp_close;
192 prot[SOCKMAP_BASE].recvmsg = bpf_tcp_recvmsg;
193 prot[SOCKMAP_BASE].stream_memory_read = bpf_tcp_stream_read;
194
195 prot[SOCKMAP_TX] = prot[SOCKMAP_BASE];
196 prot[SOCKMAP_TX].sendmsg = bpf_tcp_sendmsg;
197 prot[SOCKMAP_TX].sendpage = bpf_tcp_sendpage;
198}
199
200static void update_sk_prot(struct sock *sk, struct smap_psock *psock)
201{
202 int family = sk->sk_family == AF_INET6 ? SOCKMAP_IPV6 : SOCKMAP_IPV4;
203 int conf = psock->bpf_tx_msg ? SOCKMAP_TX : SOCKMAP_BASE;
204
205 sk->sk_prot = &bpf_tcp_prots[family][conf];
206}
207
208static int bpf_tcp_init(struct sock *sk)
209{
210 struct smap_psock *psock;
211
212 rcu_read_lock();
213 psock = smap_psock_sk(sk);
214 if (unlikely(!psock)) {
215 rcu_read_unlock();
216 return -EINVAL;
217 }
218
219 if (unlikely(psock->sk_proto)) {
220 rcu_read_unlock();
221 return -EBUSY;
222 }
223
224 psock->save_unhash = sk->sk_prot->unhash;
225 psock->save_close = sk->sk_prot->close;
226 psock->sk_proto = sk->sk_prot;
227
228 /* Build IPv6 sockmap whenever the address of tcpv6_prot changes */
229 if (sk->sk_family == AF_INET6 &&
230 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
231 spin_lock_bh(&tcpv6_prot_lock);
232 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
233 build_protos(bpf_tcp_prots[SOCKMAP_IPV6], sk->sk_prot);
234 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
235 }
236 spin_unlock_bh(&tcpv6_prot_lock);
237 }
238 update_sk_prot(sk, psock);
239 rcu_read_unlock();
240 return 0;
241}
242
243static int __init bpf_sock_init(void)
244{
245 build_protos(bpf_tcp_prots[SOCKMAP_IPV4], &tcp_prot);
246 return 0;
247}
248core_initcall(bpf_sock_init);
249
250static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
251static int free_start_sg(struct sock *sk, struct sk_msg_buff *md, bool charge);
252
253static void bpf_tcp_release(struct sock *sk)
254{
255 struct smap_psock *psock;
256
257 rcu_read_lock();
258 psock = smap_psock_sk(sk);
259 if (unlikely(!psock))
260 goto out;
261
262 if (psock->cork) {
263 free_start_sg(psock->sock, psock->cork, true);
264 kfree(psock->cork);
265 psock->cork = NULL;
266 }
267
268 if (psock->sk_proto) {
269 sk->sk_prot = psock->sk_proto;
270 psock->sk_proto = NULL;
271 }
272out:
273 rcu_read_unlock();
274}
275
276static struct htab_elem *lookup_elem_raw(struct hlist_head *head,
277 u32 hash, void *key, u32 key_size)
278{
279 struct htab_elem *l;
280
281 hlist_for_each_entry_rcu(l, head, hash_node) {
282 if (l->hash == hash && !memcmp(&l->key, key, key_size))
283 return l;
284 }
285
286 return NULL;
287}
288
289static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
290{
291 return &htab->buckets[hash & (htab->n_buckets - 1)];
292}
293
294static inline struct hlist_head *select_bucket(struct bpf_htab *htab, u32 hash)
295{
296 return &__select_bucket(htab, hash)->head;
297}
298
299static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
300{
301 atomic_dec(&htab->count);
302 kfree_rcu(l, rcu);
303}
304
305static struct smap_psock_map_entry *psock_map_pop(struct sock *sk,
306 struct smap_psock *psock)
307{
308 struct smap_psock_map_entry *e;
309
310 spin_lock_bh(&psock->maps_lock);
311 e = list_first_entry_or_null(&psock->maps,
312 struct smap_psock_map_entry,
313 list);
314 if (e)
315 list_del(&e->list);
316 spin_unlock_bh(&psock->maps_lock);
317 return e;
318}
319
320static void bpf_tcp_remove(struct sock *sk, struct smap_psock *psock)
321{
322 struct smap_psock_map_entry *e;
323 struct sk_msg_buff *md, *mtmp;
324 struct sock *osk;
325
326 if (psock->cork) {
327 free_start_sg(psock->sock, psock->cork, true);
328 kfree(psock->cork);
329 psock->cork = NULL;
330 }
331
332 list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
333 list_del(&md->list);
334 free_start_sg(psock->sock, md, true);
335 kfree(md);
336 }
337
338 e = psock_map_pop(sk, psock);
339 while (e) {
340 if (e->entry) {
341 struct bpf_stab *stab = container_of(e->map, struct bpf_stab, map);
342
343 raw_spin_lock_bh(&stab->lock);
344 osk = *e->entry;
345 if (osk == sk) {
346 *e->entry = NULL;
347 smap_release_sock(psock, sk);
348 }
349 raw_spin_unlock_bh(&stab->lock);
350 } else {
351 struct htab_elem *link = rcu_dereference(e->hash_link);
352 struct bpf_htab *htab = container_of(e->map, struct bpf_htab, map);
353 struct hlist_head *head;
354 struct htab_elem *l;
355 struct bucket *b;
356
357 b = __select_bucket(htab, link->hash);
358 head = &b->head;
359 raw_spin_lock_bh(&b->lock);
360 l = lookup_elem_raw(head,
361 link->hash, link->key,
362 htab->map.key_size);
363 /* If another thread deleted this object skip deletion.
364 * The refcnt on psock may or may not be zero.
365 */
366 if (l && l == link) {
367 hlist_del_rcu(&link->hash_node);
368 smap_release_sock(psock, link->sk);
369 free_htab_elem(htab, link);
370 }
371 raw_spin_unlock_bh(&b->lock);
372 }
373 kfree(e);
374 e = psock_map_pop(sk, psock);
375 }
376}
377
378static void bpf_tcp_unhash(struct sock *sk)
379{
380 void (*unhash_fun)(struct sock *sk);
381 struct smap_psock *psock;
382
383 rcu_read_lock();
384 psock = smap_psock_sk(sk);
385 if (unlikely(!psock)) {
386 rcu_read_unlock();
387 if (sk->sk_prot->unhash)
388 sk->sk_prot->unhash(sk);
389 return;
390 }
391 unhash_fun = psock->save_unhash;
392 bpf_tcp_remove(sk, psock);
393 rcu_read_unlock();
394 unhash_fun(sk);
395}
396
397static void bpf_tcp_close(struct sock *sk, long timeout)
398{
399 void (*close_fun)(struct sock *sk, long timeout);
400 struct smap_psock *psock;
401
402 lock_sock(sk);
403 rcu_read_lock();
404 psock = smap_psock_sk(sk);
405 if (unlikely(!psock)) {
406 rcu_read_unlock();
407 release_sock(sk);
408 return sk->sk_prot->close(sk, timeout);
409 }
410 close_fun = psock->save_close;
411 bpf_tcp_remove(sk, psock);
412 rcu_read_unlock();
413 release_sock(sk);
414 close_fun(sk, timeout);
415}
416
417enum __sk_action {
418 __SK_DROP = 0,
419 __SK_PASS,
420 __SK_REDIRECT,
421 __SK_NONE,
422};
423
424static int memcopy_from_iter(struct sock *sk,
425 struct sk_msg_buff *md,
426 struct iov_iter *from, int bytes)
427{
428 struct scatterlist *sg = md->sg_data;
429 int i = md->sg_curr, rc = -ENOSPC;
430
431 do {
432 int copy;
433 char *to;
434
435 if (md->sg_copybreak >= sg[i].length) {
436 md->sg_copybreak = 0;
437
438 if (++i == MAX_SKB_FRAGS)
439 i = 0;
440
441 if (i == md->sg_end)
442 break;
443 }
444
445 copy = sg[i].length - md->sg_copybreak;
446 to = sg_virt(&sg[i]) + md->sg_copybreak;
447 md->sg_copybreak += copy;
448
449 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
450 rc = copy_from_iter_nocache(to, copy, from);
451 else
452 rc = copy_from_iter(to, copy, from);
453
454 if (rc != copy) {
455 rc = -EFAULT;
456 goto out;
457 }
458
459 bytes -= copy;
460 if (!bytes)
461 break;
462
463 md->sg_copybreak = 0;
464 if (++i == MAX_SKB_FRAGS)
465 i = 0;
466 } while (i != md->sg_end);
467out:
468 md->sg_curr = i;
469 return rc;
470}
471
472static int bpf_tcp_push(struct sock *sk, int apply_bytes,
473 struct sk_msg_buff *md,
474 int flags, bool uncharge)
475{
476 bool apply = apply_bytes;
477 struct scatterlist *sg;
478 int offset, ret = 0;
479 struct page *p;
480 size_t size;
481
482 while (1) {
483 sg = md->sg_data + md->sg_start;
484 size = (apply && apply_bytes < sg->length) ?
485 apply_bytes : sg->length;
486 offset = sg->offset;
487
488 tcp_rate_check_app_limited(sk);
489 p = sg_page(sg);
490retry:
491 ret = do_tcp_sendpages(sk, p, offset, size, flags);
492 if (ret != size) {
493 if (ret > 0) {
494 if (apply)
495 apply_bytes -= ret;
496
497 sg->offset += ret;
498 sg->length -= ret;
499 size -= ret;
500 offset += ret;
501 if (uncharge)
502 sk_mem_uncharge(sk, ret);
503 goto retry;
504 }
505
506 return ret;
507 }
508
509 if (apply)
510 apply_bytes -= ret;
511 sg->offset += ret;
512 sg->length -= ret;
513 if (uncharge)
514 sk_mem_uncharge(sk, ret);
515
516 if (!sg->length) {
517 put_page(p);
518 md->sg_start++;
519 if (md->sg_start == MAX_SKB_FRAGS)
520 md->sg_start = 0;
521 sg_init_table(sg, 1);
522
523 if (md->sg_start == md->sg_end)
524 break;
525 }
526
527 if (apply && !apply_bytes)
528 break;
529 }
530 return 0;
531}
532
533static inline void bpf_compute_data_pointers_sg(struct sk_msg_buff *md)
534{
535 struct scatterlist *sg = md->sg_data + md->sg_start;
536
537 if (md->sg_copy[md->sg_start]) {
538 md->data = md->data_end = 0;
539 } else {
540 md->data = sg_virt(sg);
541 md->data_end = md->data + sg->length;
542 }
543}
544
545static void return_mem_sg(struct sock *sk, int bytes, struct sk_msg_buff *md)
546{
547 struct scatterlist *sg = md->sg_data;
548 int i = md->sg_start;
549
550 do {
551 int uncharge = (bytes < sg[i].length) ? bytes : sg[i].length;
552
553 sk_mem_uncharge(sk, uncharge);
554 bytes -= uncharge;
555 if (!bytes)
556 break;
557 i++;
558 if (i == MAX_SKB_FRAGS)
559 i = 0;
560 } while (i != md->sg_end);
561}
562
563static void free_bytes_sg(struct sock *sk, int bytes,
564 struct sk_msg_buff *md, bool charge)
565{
566 struct scatterlist *sg = md->sg_data;
567 int i = md->sg_start, free;
568
569 while (bytes && sg[i].length) {
570 free = sg[i].length;
571 if (bytes < free) {
572 sg[i].length -= bytes;
573 sg[i].offset += bytes;
574 if (charge)
575 sk_mem_uncharge(sk, bytes);
576 break;
577 }
578
579 if (charge)
580 sk_mem_uncharge(sk, sg[i].length);
581 put_page(sg_page(&sg[i]));
582 bytes -= sg[i].length;
583 sg[i].length = 0;
584 sg[i].page_link = 0;
585 sg[i].offset = 0;
586 i++;
587
588 if (i == MAX_SKB_FRAGS)
589 i = 0;
590 }
591 md->sg_start = i;
592}
593
594static int free_sg(struct sock *sk, int start,
595 struct sk_msg_buff *md, bool charge)
596{
597 struct scatterlist *sg = md->sg_data;
598 int i = start, free = 0;
599
600 while (sg[i].length) {
601 free += sg[i].length;
602 if (charge)
603 sk_mem_uncharge(sk, sg[i].length);
604 if (!md->skb)
605 put_page(sg_page(&sg[i]));
606 sg[i].length = 0;
607 sg[i].page_link = 0;
608 sg[i].offset = 0;
609 i++;
610
611 if (i == MAX_SKB_FRAGS)
612 i = 0;
613 }
614 consume_skb(md->skb);
615
616 return free;
617}
618
619static int free_start_sg(struct sock *sk, struct sk_msg_buff *md, bool charge)
620{
621 int free = free_sg(sk, md->sg_start, md, charge);
622
623 md->sg_start = md->sg_end;
624 return free;
625}
626
627static int free_curr_sg(struct sock *sk, struct sk_msg_buff *md)
628{
629 return free_sg(sk, md->sg_curr, md, true);
630}
631
632static int bpf_map_msg_verdict(int _rc, struct sk_msg_buff *md)
633{
634 return ((_rc == SK_PASS) ?
635 (md->sk_redir ? __SK_REDIRECT : __SK_PASS) :
636 __SK_DROP);
637}
638
639static unsigned int smap_do_tx_msg(struct sock *sk,
640 struct smap_psock *psock,
641 struct sk_msg_buff *md)
642{
643 struct bpf_prog *prog;
644 unsigned int rc, _rc;
645
646 preempt_disable();
647 rcu_read_lock();
648
649 /* If the policy was removed mid-send then default to 'accept' */
650 prog = READ_ONCE(psock->bpf_tx_msg);
651 if (unlikely(!prog)) {
652 _rc = SK_PASS;
653 goto verdict;
654 }
655
656 bpf_compute_data_pointers_sg(md);
657 md->sk = sk;
658 rc = (*prog->bpf_func)(md, prog->insnsi);
659 psock->apply_bytes = md->apply_bytes;
660
661 /* Moving return codes from UAPI namespace into internal namespace */
662 _rc = bpf_map_msg_verdict(rc, md);
663
664 /* The psock has a refcount on the sock but not on the map and because
665 * we need to drop rcu read lock here its possible the map could be
666 * removed between here and when we need it to execute the sock
667 * redirect. So do the map lookup now for future use.
668 */
669 if (_rc == __SK_REDIRECT) {
670 if (psock->sk_redir)
671 sock_put(psock->sk_redir);
672 psock->sk_redir = do_msg_redirect_map(md);
673 if (!psock->sk_redir) {
674 _rc = __SK_DROP;
675 goto verdict;
676 }
677 sock_hold(psock->sk_redir);
678 }
679verdict:
680 rcu_read_unlock();
681 preempt_enable();
682
683 return _rc;
684}
685
686static int bpf_tcp_ingress(struct sock *sk, int apply_bytes,
687 struct smap_psock *psock,
688 struct sk_msg_buff *md, int flags)
689{
690 bool apply = apply_bytes;
691 size_t size, copied = 0;
692 struct sk_msg_buff *r;
693 int err = 0, i;
694
695 r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_KERNEL);
696 if (unlikely(!r))
697 return -ENOMEM;
698
699 lock_sock(sk);
700 r->sg_start = md->sg_start;
701 i = md->sg_start;
702
703 do {
704 size = (apply && apply_bytes < md->sg_data[i].length) ?
705 apply_bytes : md->sg_data[i].length;
706
707 if (!sk_wmem_schedule(sk, size)) {
708 if (!copied)
709 err = -ENOMEM;
710 break;
711 }
712
713 sk_mem_charge(sk, size);
714 r->sg_data[i] = md->sg_data[i];
715 r->sg_data[i].length = size;
716 md->sg_data[i].length -= size;
717 md->sg_data[i].offset += size;
718 copied += size;
719
720 if (md->sg_data[i].length) {
721 get_page(sg_page(&r->sg_data[i]));
722 r->sg_end = (i + 1) == MAX_SKB_FRAGS ? 0 : i + 1;
723 } else {
724 i++;
725 if (i == MAX_SKB_FRAGS)
726 i = 0;
727 r->sg_end = i;
728 }
729
730 if (apply) {
731 apply_bytes -= size;
732 if (!apply_bytes)
733 break;
734 }
735 } while (i != md->sg_end);
736
737 md->sg_start = i;
738
739 if (!err) {
740 list_add_tail(&r->list, &psock->ingress);
741 sk->sk_data_ready(sk);
742 } else {
743 free_start_sg(sk, r, true);
744 kfree(r);
745 }
746
747 release_sock(sk);
748 return err;
749}
750
751static int bpf_tcp_sendmsg_do_redirect(struct sock *sk, int send,
752 struct sk_msg_buff *md,
753 int flags)
754{
755 bool ingress = !!(md->flags & BPF_F_INGRESS);
756 struct smap_psock *psock;
757 int err = 0;
758
759 rcu_read_lock();
760 psock = smap_psock_sk(sk);
761 if (unlikely(!psock))
762 goto out_rcu;
763
764 if (!refcount_inc_not_zero(&psock->refcnt))
765 goto out_rcu;
766
767 rcu_read_unlock();
768
769 if (ingress) {
770 err = bpf_tcp_ingress(sk, send, psock, md, flags);
771 } else {
772 lock_sock(sk);
773 err = bpf_tcp_push(sk, send, md, flags, false);
774 release_sock(sk);
775 }
776 smap_release_sock(psock, sk);
777 return err;
778out_rcu:
779 rcu_read_unlock();
780 return 0;
781}
782
783static inline void bpf_md_init(struct smap_psock *psock)
784{
785 if (!psock->apply_bytes) {
786 psock->eval = __SK_NONE;
787 if (psock->sk_redir) {
788 sock_put(psock->sk_redir);
789 psock->sk_redir = NULL;
790 }
791 }
792}
793
794static void apply_bytes_dec(struct smap_psock *psock, int i)
795{
796 if (psock->apply_bytes) {
797 if (psock->apply_bytes < i)
798 psock->apply_bytes = 0;
799 else
800 psock->apply_bytes -= i;
801 }
802}
803
804static int bpf_exec_tx_verdict(struct smap_psock *psock,
805 struct sk_msg_buff *m,
806 struct sock *sk,
807 int *copied, int flags)
808{
809 bool cork = false, enospc = (m->sg_start == m->sg_end);
810 struct sock *redir;
811 int err = 0;
812 int send;
813
814more_data:
815 if (psock->eval == __SK_NONE)
816 psock->eval = smap_do_tx_msg(sk, psock, m);
817
818 if (m->cork_bytes &&
819 m->cork_bytes > psock->sg_size && !enospc) {
820 psock->cork_bytes = m->cork_bytes - psock->sg_size;
821 if (!psock->cork) {
822 psock->cork = kcalloc(1,
823 sizeof(struct sk_msg_buff),
824 GFP_ATOMIC | __GFP_NOWARN);
825
826 if (!psock->cork) {
827 err = -ENOMEM;
828 goto out_err;
829 }
830 }
831 memcpy(psock->cork, m, sizeof(*m));
832 goto out_err;
833 }
834
835 send = psock->sg_size;
836 if (psock->apply_bytes && psock->apply_bytes < send)
837 send = psock->apply_bytes;
838
839 switch (psock->eval) {
840 case __SK_PASS:
841 err = bpf_tcp_push(sk, send, m, flags, true);
842 if (unlikely(err)) {
843 *copied -= free_start_sg(sk, m, true);
844 break;
845 }
846
847 apply_bytes_dec(psock, send);
848 psock->sg_size -= send;
849 break;
850 case __SK_REDIRECT:
851 redir = psock->sk_redir;
852 apply_bytes_dec(psock, send);
853
854 if (psock->cork) {
855 cork = true;
856 psock->cork = NULL;
857 }
858
859 return_mem_sg(sk, send, m);
860 release_sock(sk);
861
862 err = bpf_tcp_sendmsg_do_redirect(redir, send, m, flags);
863 lock_sock(sk);
864
865 if (unlikely(err < 0)) {
866 int free = free_start_sg(sk, m, false);
867
868 psock->sg_size = 0;
869 if (!cork)
870 *copied -= free;
871 } else {
872 psock->sg_size -= send;
873 }
874
875 if (cork) {
876 free_start_sg(sk, m, true);
877 psock->sg_size = 0;
878 kfree(m);
879 m = NULL;
880 err = 0;
881 }
882 break;
883 case __SK_DROP:
884 default:
885 free_bytes_sg(sk, send, m, true);
886 apply_bytes_dec(psock, send);
887 *copied -= send;
888 psock->sg_size -= send;
889 err = -EACCES;
890 break;
891 }
892
893 if (likely(!err)) {
894 bpf_md_init(psock);
895 if (m &&
896 m->sg_data[m->sg_start].page_link &&
897 m->sg_data[m->sg_start].length)
898 goto more_data;
899 }
900
901out_err:
902 return err;
903}
904
905static int bpf_wait_data(struct sock *sk,
906 struct smap_psock *psk, int flags,
907 long timeo, int *err)
908{
909 int rc;
910
911 DEFINE_WAIT_FUNC(wait, woken_wake_function);
912
913 add_wait_queue(sk_sleep(sk), &wait);
914 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
915 rc = sk_wait_event(sk, &timeo,
916 !list_empty(&psk->ingress) ||
917 !skb_queue_empty(&sk->sk_receive_queue),
918 &wait);
919 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
920 remove_wait_queue(sk_sleep(sk), &wait);
921
922 return rc;
923}
924
925static int bpf_tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
926 int nonblock, int flags, int *addr_len)
927{
928 struct iov_iter *iter = &msg->msg_iter;
929 struct smap_psock *psock;
930 int copied = 0;
931
932 if (unlikely(flags & MSG_ERRQUEUE))
933 return inet_recv_error(sk, msg, len, addr_len);
934 if (!skb_queue_empty(&sk->sk_receive_queue))
935 return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
936
937 rcu_read_lock();
938 psock = smap_psock_sk(sk);
939 if (unlikely(!psock))
940 goto out;
941
942 if (unlikely(!refcount_inc_not_zero(&psock->refcnt)))
943 goto out;
944 rcu_read_unlock();
945
946 lock_sock(sk);
947bytes_ready:
948 while (copied != len) {
949 struct scatterlist *sg;
950 struct sk_msg_buff *md;
951 int i;
952
953 md = list_first_entry_or_null(&psock->ingress,
954 struct sk_msg_buff, list);
955 if (unlikely(!md))
956 break;
957 i = md->sg_start;
958 do {
959 struct page *page;
960 int n, copy;
961
962 sg = &md->sg_data[i];
963 copy = sg->length;
964 page = sg_page(sg);
965
966 if (copied + copy > len)
967 copy = len - copied;
968
969 n = copy_page_to_iter(page, sg->offset, copy, iter);
970 if (n != copy) {
971 md->sg_start = i;
972 release_sock(sk);
973 smap_release_sock(psock, sk);
974 return -EFAULT;
975 }
976
977 copied += copy;
978 sg->offset += copy;
979 sg->length -= copy;
980 sk_mem_uncharge(sk, copy);
981
982 if (!sg->length) {
983 i++;
984 if (i == MAX_SKB_FRAGS)
985 i = 0;
986 if (!md->skb)
987 put_page(page);
988 }
989 if (copied == len)
990 break;
991 } while (i != md->sg_end);
992 md->sg_start = i;
993
994 if (!sg->length && md->sg_start == md->sg_end) {
995 list_del(&md->list);
996 consume_skb(md->skb);
997 kfree(md);
998 }
999 }
1000
1001 if (!copied) {
1002 long timeo;
1003 int data;
1004 int err = 0;
1005
1006 timeo = sock_rcvtimeo(sk, nonblock);
1007 data = bpf_wait_data(sk, psock, flags, timeo, &err);
1008
1009 if (data) {
1010 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1011 release_sock(sk);
1012 smap_release_sock(psock, sk);
1013 copied = tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
1014 return copied;
1015 }
1016 goto bytes_ready;
1017 }
1018
1019 if (err)
1020 copied = err;
1021 }
1022
1023 release_sock(sk);
1024 smap_release_sock(psock, sk);
1025 return copied;
1026out:
1027 rcu_read_unlock();
1028 return tcp_recvmsg(sk, msg, len, nonblock, flags, addr_len);
1029}
1030
1031
1032static int bpf_tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1033{
1034 int flags = msg->msg_flags | MSG_NO_SHARED_FRAGS;
1035 struct sk_msg_buff md = {0};
1036 unsigned int sg_copy = 0;
1037 struct smap_psock *psock;
1038 int copied = 0, err = 0;
1039 struct scatterlist *sg;
1040 long timeo;
1041
1042 /* Its possible a sock event or user removed the psock _but_ the ops
1043 * have not been reprogrammed yet so we get here. In this case fallback
1044 * to tcp_sendmsg. Note this only works because we _only_ ever allow
1045 * a single ULP there is no hierarchy here.
1046 */
1047 rcu_read_lock();
1048 psock = smap_psock_sk(sk);
1049 if (unlikely(!psock)) {
1050 rcu_read_unlock();
1051 return tcp_sendmsg(sk, msg, size);
1052 }
1053
1054 /* Increment the psock refcnt to ensure its not released while sending a
1055 * message. Required because sk lookup and bpf programs are used in
1056 * separate rcu critical sections. Its OK if we lose the map entry
1057 * but we can't lose the sock reference.
1058 */
1059 if (!refcount_inc_not_zero(&psock->refcnt)) {
1060 rcu_read_unlock();
1061 return tcp_sendmsg(sk, msg, size);
1062 }
1063
1064 sg = md.sg_data;
1065 sg_init_marker(sg, MAX_SKB_FRAGS);
1066 rcu_read_unlock();
1067
1068 lock_sock(sk);
1069 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1070
1071 while (msg_data_left(msg)) {
1072 struct sk_msg_buff *m = NULL;
1073 bool enospc = false;
1074 int copy;
1075
1076 if (sk->sk_err) {
1077 err = -sk->sk_err;
1078 goto out_err;
1079 }
1080
1081 copy = msg_data_left(msg);
1082 if (!sk_stream_memory_free(sk))
1083 goto wait_for_sndbuf;
1084
1085 m = psock->cork_bytes ? psock->cork : &md;
1086 m->sg_curr = m->sg_copybreak ? m->sg_curr : m->sg_end;
1087 err = sk_alloc_sg(sk, copy, m->sg_data,
1088 m->sg_start, &m->sg_end, &sg_copy,
1089 m->sg_end - 1);
1090 if (err) {
1091 if (err != -ENOSPC)
1092 goto wait_for_memory;
1093 enospc = true;
1094 copy = sg_copy;
1095 }
1096
1097 err = memcopy_from_iter(sk, m, &msg->msg_iter, copy);
1098 if (err < 0) {
1099 free_curr_sg(sk, m);
1100 goto out_err;
1101 }
1102
1103 psock->sg_size += copy;
1104 copied += copy;
1105 sg_copy = 0;
1106
1107 /* When bytes are being corked skip running BPF program and
1108 * applying verdict unless there is no more buffer space. In
1109 * the ENOSPC case simply run BPF prorgram with currently
1110 * accumulated data. We don't have much choice at this point
1111 * we could try extending the page frags or chaining complex
1112 * frags but even in these cases _eventually_ we will hit an
1113 * OOM scenario. More complex recovery schemes may be
1114 * implemented in the future, but BPF programs must handle
1115 * the case where apply_cork requests are not honored. The
1116 * canonical method to verify this is to check data length.
1117 */
1118 if (psock->cork_bytes) {
1119 if (copy > psock->cork_bytes)
1120 psock->cork_bytes = 0;
1121 else
1122 psock->cork_bytes -= copy;
1123
1124 if (psock->cork_bytes && !enospc)
1125 goto out_cork;
1126
1127 /* All cork bytes accounted for re-run filter */
1128 psock->eval = __SK_NONE;
1129 psock->cork_bytes = 0;
1130 }
1131
1132 err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
1133 if (unlikely(err < 0))
1134 goto out_err;
1135 continue;
1136wait_for_sndbuf:
1137 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1138wait_for_memory:
1139 err = sk_stream_wait_memory(sk, &timeo);
1140 if (err) {
1141 if (m && m != psock->cork)
1142 free_start_sg(sk, m, true);
1143 goto out_err;
1144 }
1145 }
1146out_err:
1147 if (err < 0)
1148 err = sk_stream_error(sk, msg->msg_flags, err);
1149out_cork:
1150 release_sock(sk);
1151 smap_release_sock(psock, sk);
1152 return copied ? copied : err;
1153}
1154
1155static int bpf_tcp_sendpage(struct sock *sk, struct page *page,
1156 int offset, size_t size, int flags)
1157{
1158 struct sk_msg_buff md = {0}, *m = NULL;
1159 int err = 0, copied = 0;
1160 struct smap_psock *psock;
1161 struct scatterlist *sg;
1162 bool enospc = false;
1163
1164 rcu_read_lock();
1165 psock = smap_psock_sk(sk);
1166 if (unlikely(!psock))
1167 goto accept;
1168
1169 if (!refcount_inc_not_zero(&psock->refcnt))
1170 goto accept;
1171 rcu_read_unlock();
1172
1173 lock_sock(sk);
1174
1175 if (psock->cork_bytes) {
1176 m = psock->cork;
1177 sg = &m->sg_data[m->sg_end];
1178 } else {
1179 m = &md;
1180 sg = m->sg_data;
1181 sg_init_marker(sg, MAX_SKB_FRAGS);
1182 }
1183
1184 /* Catch case where ring is full and sendpage is stalled. */
1185 if (unlikely(m->sg_end == m->sg_start &&
1186 m->sg_data[m->sg_end].length))
1187 goto out_err;
1188
1189 psock->sg_size += size;
1190 sg_set_page(sg, page, size, offset);
1191 get_page(page);
1192 m->sg_copy[m->sg_end] = true;
1193 sk_mem_charge(sk, size);
1194 m->sg_end++;
1195 copied = size;
1196
1197 if (m->sg_end == MAX_SKB_FRAGS)
1198 m->sg_end = 0;
1199
1200 if (m->sg_end == m->sg_start)
1201 enospc = true;
1202
1203 if (psock->cork_bytes) {
1204 if (size > psock->cork_bytes)
1205 psock->cork_bytes = 0;
1206 else
1207 psock->cork_bytes -= size;
1208
1209 if (psock->cork_bytes && !enospc)
1210 goto out_err;
1211
1212 /* All cork bytes accounted for re-run filter */
1213 psock->eval = __SK_NONE;
1214 psock->cork_bytes = 0;
1215 }
1216
1217 err = bpf_exec_tx_verdict(psock, m, sk, &copied, flags);
1218out_err:
1219 release_sock(sk);
1220 smap_release_sock(psock, sk);
1221 return copied ? copied : err;
1222accept:
1223 rcu_read_unlock();
1224 return tcp_sendpage(sk, page, offset, size, flags);
1225}
1226
1227static void bpf_tcp_msg_add(struct smap_psock *psock,
1228 struct sock *sk,
1229 struct bpf_prog *tx_msg)
1230{
1231 struct bpf_prog *orig_tx_msg;
1232
1233 orig_tx_msg = xchg(&psock->bpf_tx_msg, tx_msg);
1234 if (orig_tx_msg)
1235 bpf_prog_put(orig_tx_msg);
1236}
1237
1238static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
1239{
1240 struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
1241 int rc;
1242
1243 if (unlikely(!prog))
1244 return __SK_DROP;
1245
1246 skb_orphan(skb);
1247 /* We need to ensure that BPF metadata for maps is also cleared
1248 * when we orphan the skb so that we don't have the possibility
1249 * to reference a stale map.
1250 */
1251 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
1252 skb->sk = psock->sock;
1253 bpf_compute_data_end_sk_skb(skb);
1254 preempt_disable();
1255 rc = (*prog->bpf_func)(skb, prog->insnsi);
1256 preempt_enable();
1257 skb->sk = NULL;
1258
1259 /* Moving return codes from UAPI namespace into internal namespace */
1260 return rc == SK_PASS ?
1261 (TCP_SKB_CB(skb)->bpf.sk_redir ? __SK_REDIRECT : __SK_PASS) :
1262 __SK_DROP;
1263}
1264
1265static int smap_do_ingress(struct smap_psock *psock, struct sk_buff *skb)
1266{
1267 struct sock *sk = psock->sock;
1268 int copied = 0, num_sg;
1269 struct sk_msg_buff *r;
1270
1271 r = kzalloc(sizeof(struct sk_msg_buff), __GFP_NOWARN | GFP_ATOMIC);
1272 if (unlikely(!r))
1273 return -EAGAIN;
1274
1275 if (!sk_rmem_schedule(sk, skb, skb->len)) {
1276 kfree(r);
1277 return -EAGAIN;
1278 }
1279
1280 sg_init_table(r->sg_data, MAX_SKB_FRAGS);
1281 num_sg = skb_to_sgvec(skb, r->sg_data, 0, skb->len);
1282 if (unlikely(num_sg < 0)) {
1283 kfree(r);
1284 return num_sg;
1285 }
1286 sk_mem_charge(sk, skb->len);
1287 copied = skb->len;
1288 r->sg_start = 0;
1289 r->sg_end = num_sg == MAX_SKB_FRAGS ? 0 : num_sg;
1290 r->skb = skb;
1291 list_add_tail(&r->list, &psock->ingress);
1292 sk->sk_data_ready(sk);
1293 return copied;
1294}
1295
1296static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
1297{
1298 struct smap_psock *peer;
1299 struct sock *sk;
1300 __u32 in;
1301 int rc;
1302
1303 rc = smap_verdict_func(psock, skb);
1304 switch (rc) {
1305 case __SK_REDIRECT:
1306 sk = do_sk_redirect_map(skb);
1307 if (!sk) {
1308 kfree_skb(skb);
1309 break;
1310 }
1311
1312 peer = smap_psock_sk(sk);
1313 in = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
1314
1315 if (unlikely(!peer || sock_flag(sk, SOCK_DEAD) ||
1316 !test_bit(SMAP_TX_RUNNING, &peer->state))) {
1317 kfree_skb(skb);
1318 break;
1319 }
1320
1321 if (!in && sock_writeable(sk)) {
1322 skb_set_owner_w(skb, sk);
1323 skb_queue_tail(&peer->rxqueue, skb);
1324 schedule_work(&peer->tx_work);
1325 break;
1326 } else if (in &&
1327 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
1328 skb_queue_tail(&peer->rxqueue, skb);
1329 schedule_work(&peer->tx_work);
1330 break;
1331 }
1332 /* Fall through and free skb otherwise */
1333 case __SK_DROP:
1334 default:
1335 kfree_skb(skb);
1336 }
1337}
1338
1339static void smap_report_sk_error(struct smap_psock *psock, int err)
1340{
1341 struct sock *sk = psock->sock;
1342
1343 sk->sk_err = err;
1344 sk->sk_error_report(sk);
1345}
1346
1347static void smap_read_sock_strparser(struct strparser *strp,
1348 struct sk_buff *skb)
1349{
1350 struct smap_psock *psock;
1351
1352 rcu_read_lock();
1353 psock = container_of(strp, struct smap_psock, strp);
1354 smap_do_verdict(psock, skb);
1355 rcu_read_unlock();
1356}
1357
1358/* Called with lock held on socket */
1359static void smap_data_ready(struct sock *sk)
1360{
1361 struct smap_psock *psock;
1362
1363 rcu_read_lock();
1364 psock = smap_psock_sk(sk);
1365 if (likely(psock)) {
1366 write_lock_bh(&sk->sk_callback_lock);
1367 strp_data_ready(&psock->strp);
1368 write_unlock_bh(&sk->sk_callback_lock);
1369 }
1370 rcu_read_unlock();
1371}
1372
1373static void smap_tx_work(struct work_struct *w)
1374{
1375 struct smap_psock *psock;
1376 struct sk_buff *skb;
1377 int rem, off, n;
1378
1379 psock = container_of(w, struct smap_psock, tx_work);
1380
1381 /* lock sock to avoid losing sk_socket at some point during loop */
1382 lock_sock(psock->sock);
1383 if (psock->save_skb) {
1384 skb = psock->save_skb;
1385 rem = psock->save_rem;
1386 off = psock->save_off;
1387 psock->save_skb = NULL;
1388 goto start;
1389 }
1390
1391 while ((skb = skb_dequeue(&psock->rxqueue))) {
1392 __u32 flags;
1393
1394 rem = skb->len;
1395 off = 0;
1396start:
1397 flags = (TCP_SKB_CB(skb)->bpf.flags) & BPF_F_INGRESS;
1398 do {
1399 if (likely(psock->sock->sk_socket)) {
1400 if (flags)
1401 n = smap_do_ingress(psock, skb);
1402 else
1403 n = skb_send_sock_locked(psock->sock,
1404 skb, off, rem);
1405 } else {
1406 n = -EINVAL;
1407 }
1408
1409 if (n <= 0) {
1410 if (n == -EAGAIN) {
1411 /* Retry when space is available */
1412 psock->save_skb = skb;
1413 psock->save_rem = rem;
1414 psock->save_off = off;
1415 goto out;
1416 }
1417 /* Hard errors break pipe and stop xmit */
1418 smap_report_sk_error(psock, n ? -n : EPIPE);
1419 clear_bit(SMAP_TX_RUNNING, &psock->state);
1420 kfree_skb(skb);
1421 goto out;
1422 }
1423 rem -= n;
1424 off += n;
1425 } while (rem);
1426
1427 if (!flags)
1428 kfree_skb(skb);
1429 }
1430out:
1431 release_sock(psock->sock);
1432}
1433
1434static void smap_write_space(struct sock *sk)
1435{
1436 struct smap_psock *psock;
1437 void (*write_space)(struct sock *sk);
1438
1439 rcu_read_lock();
1440 psock = smap_psock_sk(sk);
1441 if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
1442 schedule_work(&psock->tx_work);
1443 write_space = psock->save_write_space;
1444 rcu_read_unlock();
1445 write_space(sk);
1446}
1447
1448static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
1449{
1450 if (!psock->strp_enabled)
1451 return;
1452 sk->sk_data_ready = psock->save_data_ready;
1453 sk->sk_write_space = psock->save_write_space;
1454 psock->save_data_ready = NULL;
1455 psock->save_write_space = NULL;
1456 strp_stop(&psock->strp);
1457 psock->strp_enabled = false;
1458}
1459
1460static void smap_destroy_psock(struct rcu_head *rcu)
1461{
1462 struct smap_psock *psock = container_of(rcu,
1463 struct smap_psock, rcu);
1464
1465 /* Now that a grace period has passed there is no longer
1466 * any reference to this sock in the sockmap so we can
1467 * destroy the psock, strparser, and bpf programs. But,
1468 * because we use workqueue sync operations we can not
1469 * do it in rcu context
1470 */
1471 schedule_work(&psock->gc_work);
1472}
1473
1474static bool psock_is_smap_sk(struct sock *sk)
1475{
1476 return inet_csk(sk)->icsk_ulp_ops == &bpf_tcp_ulp_ops;
1477}
1478
1479static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
1480{
1481 if (refcount_dec_and_test(&psock->refcnt)) {
1482 if (psock_is_smap_sk(sock))
1483 bpf_tcp_release(sock);
1484 write_lock_bh(&sock->sk_callback_lock);
1485 smap_stop_sock(psock, sock);
1486 write_unlock_bh(&sock->sk_callback_lock);
1487 clear_bit(SMAP_TX_RUNNING, &psock->state);
1488 rcu_assign_sk_user_data(sock, NULL);
1489 call_rcu_sched(&psock->rcu, smap_destroy_psock);
1490 }
1491}
1492
1493static int smap_parse_func_strparser(struct strparser *strp,
1494 struct sk_buff *skb)
1495{
1496 struct smap_psock *psock;
1497 struct bpf_prog *prog;
1498 int rc;
1499
1500 rcu_read_lock();
1501 psock = container_of(strp, struct smap_psock, strp);
1502 prog = READ_ONCE(psock->bpf_parse);
1503
1504 if (unlikely(!prog)) {
1505 rcu_read_unlock();
1506 return skb->len;
1507 }
1508
1509 /* Attach socket for bpf program to use if needed we can do this
1510 * because strparser clones the skb before handing it to a upper
1511 * layer, meaning skb_orphan has been called. We NULL sk on the
1512 * way out to ensure we don't trigger a BUG_ON in skb/sk operations
1513 * later and because we are not charging the memory of this skb to
1514 * any socket yet.
1515 */
1516 skb->sk = psock->sock;
1517 bpf_compute_data_end_sk_skb(skb);
1518 rc = (*prog->bpf_func)(skb, prog->insnsi);
1519 skb->sk = NULL;
1520 rcu_read_unlock();
1521 return rc;
1522}
1523
1524static int smap_read_sock_done(struct strparser *strp, int err)
1525{
1526 return err;
1527}
1528
1529static int smap_init_sock(struct smap_psock *psock,
1530 struct sock *sk)
1531{
1532 static const struct strp_callbacks cb = {
1533 .rcv_msg = smap_read_sock_strparser,
1534 .parse_msg = smap_parse_func_strparser,
1535 .read_sock_done = smap_read_sock_done,
1536 };
1537
1538 return strp_init(&psock->strp, sk, &cb);
1539}
1540
1541static void smap_init_progs(struct smap_psock *psock,
1542 struct bpf_prog *verdict,
1543 struct bpf_prog *parse)
1544{
1545 struct bpf_prog *orig_parse, *orig_verdict;
1546
1547 orig_parse = xchg(&psock->bpf_parse, parse);
1548 orig_verdict = xchg(&psock->bpf_verdict, verdict);
1549
1550 if (orig_verdict)
1551 bpf_prog_put(orig_verdict);
1552 if (orig_parse)
1553 bpf_prog_put(orig_parse);
1554}
1555
1556static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
1557{
1558 if (sk->sk_data_ready == smap_data_ready)
1559 return;
1560 psock->save_data_ready = sk->sk_data_ready;
1561 psock->save_write_space = sk->sk_write_space;
1562 sk->sk_data_ready = smap_data_ready;
1563 sk->sk_write_space = smap_write_space;
1564 psock->strp_enabled = true;
1565}
1566
1567static void sock_map_remove_complete(struct bpf_stab *stab)
1568{
1569 bpf_map_area_free(stab->sock_map);
1570 kfree(stab);
1571}
1572
1573static void smap_gc_work(struct work_struct *w)
1574{
1575 struct smap_psock_map_entry *e, *tmp;
1576 struct sk_msg_buff *md, *mtmp;
1577 struct smap_psock *psock;
1578
1579 psock = container_of(w, struct smap_psock, gc_work);
1580
1581 /* no callback lock needed because we already detached sockmap ops */
1582 if (psock->strp_enabled)
1583 strp_done(&psock->strp);
1584
1585 cancel_work_sync(&psock->tx_work);
1586 __skb_queue_purge(&psock->rxqueue);
1587
1588 /* At this point all strparser and xmit work must be complete */
1589 if (psock->bpf_parse)
1590 bpf_prog_put(psock->bpf_parse);
1591 if (psock->bpf_verdict)
1592 bpf_prog_put(psock->bpf_verdict);
1593 if (psock->bpf_tx_msg)
1594 bpf_prog_put(psock->bpf_tx_msg);
1595
1596 if (psock->cork) {
1597 free_start_sg(psock->sock, psock->cork, true);
1598 kfree(psock->cork);
1599 }
1600
1601 list_for_each_entry_safe(md, mtmp, &psock->ingress, list) {
1602 list_del(&md->list);
1603 free_start_sg(psock->sock, md, true);
1604 kfree(md);
1605 }
1606
1607 list_for_each_entry_safe(e, tmp, &psock->maps, list) {
1608 list_del(&e->list);
1609 kfree(e);
1610 }
1611
1612 if (psock->sk_redir)
1613 sock_put(psock->sk_redir);
1614
1615 sock_put(psock->sock);
1616 kfree(psock);
1617}
1618
1619static struct smap_psock *smap_init_psock(struct sock *sock, int node)
1620{
1621 struct smap_psock *psock;
1622
1623 psock = kzalloc_node(sizeof(struct smap_psock),
1624 GFP_ATOMIC | __GFP_NOWARN,
1625 node);
1626 if (!psock)
1627 return ERR_PTR(-ENOMEM);
1628
1629 psock->eval = __SK_NONE;
1630 psock->sock = sock;
1631 skb_queue_head_init(&psock->rxqueue);
1632 INIT_WORK(&psock->tx_work, smap_tx_work);
1633 INIT_WORK(&psock->gc_work, smap_gc_work);
1634 INIT_LIST_HEAD(&psock->maps);
1635 INIT_LIST_HEAD(&psock->ingress);
1636 refcount_set(&psock->refcnt, 1);
1637 spin_lock_init(&psock->maps_lock);
1638
1639 rcu_assign_sk_user_data(sock, psock);
1640 sock_hold(sock);
1641 return psock;
1642}
1643
1644static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
1645{
1646 struct bpf_stab *stab;
1647 u64 cost;
1648 int err;
1649
1650 if (!capable(CAP_NET_ADMIN))
1651 return ERR_PTR(-EPERM);
1652
1653 /* check sanity of attributes */
1654 if (attr->max_entries == 0 || attr->key_size != 4 ||
1655 attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
1656 return ERR_PTR(-EINVAL);
1657
1658 stab = kzalloc(sizeof(*stab), GFP_USER);
1659 if (!stab)
1660 return ERR_PTR(-ENOMEM);
1661
1662 bpf_map_init_from_attr(&stab->map, attr);
1663 raw_spin_lock_init(&stab->lock);
1664
1665 /* make sure page count doesn't overflow */
1666 cost = (u64) stab->map.max_entries * sizeof(struct sock *);
1667 err = -EINVAL;
1668 if (cost >= U32_MAX - PAGE_SIZE)
1669 goto free_stab;
1670
1671 stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
1672
1673 /* if map size is larger than memlock limit, reject it early */
1674 err = bpf_map_precharge_memlock(stab->map.pages);
1675 if (err)
1676 goto free_stab;
1677
1678 err = -ENOMEM;
1679 stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
1680 sizeof(struct sock *),
1681 stab->map.numa_node);
1682 if (!stab->sock_map)
1683 goto free_stab;
1684
1685 return &stab->map;
1686free_stab:
1687 kfree(stab);
1688 return ERR_PTR(err);
1689}
1690
1691static void smap_list_map_remove(struct smap_psock *psock,
1692 struct sock **entry)
1693{
1694 struct smap_psock_map_entry *e, *tmp;
1695
1696 spin_lock_bh(&psock->maps_lock);
1697 list_for_each_entry_safe(e, tmp, &psock->maps, list) {
1698 if (e->entry == entry) {
1699 list_del(&e->list);
1700 kfree(e);
1701 }
1702 }
1703 spin_unlock_bh(&psock->maps_lock);
1704}
1705
1706static void smap_list_hash_remove(struct smap_psock *psock,
1707 struct htab_elem *hash_link)
1708{
1709 struct smap_psock_map_entry *e, *tmp;
1710
1711 spin_lock_bh(&psock->maps_lock);
1712 list_for_each_entry_safe(e, tmp, &psock->maps, list) {
1713 struct htab_elem *c = rcu_dereference(e->hash_link);
1714
1715 if (c == hash_link) {
1716 list_del(&e->list);
1717 kfree(e);
1718 }
1719 }
1720 spin_unlock_bh(&psock->maps_lock);
1721}
1722
1723static void sock_map_free(struct bpf_map *map)
1724{
1725 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1726 int i;
1727
1728 synchronize_rcu();
1729
1730 /* At this point no update, lookup or delete operations can happen.
1731 * However, be aware we can still get a socket state event updates,
1732 * and data ready callabacks that reference the psock from sk_user_data
1733 * Also psock worker threads are still in-flight. So smap_release_sock
1734 * will only free the psock after cancel_sync on the worker threads
1735 * and a grace period expire to ensure psock is really safe to remove.
1736 */
1737 rcu_read_lock();
1738 raw_spin_lock_bh(&stab->lock);
1739 for (i = 0; i < stab->map.max_entries; i++) {
1740 struct smap_psock *psock;
1741 struct sock *sock;
1742
1743 sock = stab->sock_map[i];
1744 if (!sock)
1745 continue;
1746 stab->sock_map[i] = NULL;
1747 psock = smap_psock_sk(sock);
1748 /* This check handles a racing sock event that can get the
1749 * sk_callback_lock before this case but after xchg happens
1750 * causing the refcnt to hit zero and sock user data (psock)
1751 * to be null and queued for garbage collection.
1752 */
1753 if (likely(psock)) {
1754 smap_list_map_remove(psock, &stab->sock_map[i]);
1755 smap_release_sock(psock, sock);
1756 }
1757 }
1758 raw_spin_unlock_bh(&stab->lock);
1759 rcu_read_unlock();
1760
1761 sock_map_remove_complete(stab);
1762}
1763
1764static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
1765{
1766 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1767 u32 i = key ? *(u32 *)key : U32_MAX;
1768 u32 *next = (u32 *)next_key;
1769
1770 if (i >= stab->map.max_entries) {
1771 *next = 0;
1772 return 0;
1773 }
1774
1775 if (i == stab->map.max_entries - 1)
1776 return -ENOENT;
1777
1778 *next = i + 1;
1779 return 0;
1780}
1781
1782struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
1783{
1784 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1785
1786 if (key >= map->max_entries)
1787 return NULL;
1788
1789 return READ_ONCE(stab->sock_map[key]);
1790}
1791
1792static int sock_map_delete_elem(struct bpf_map *map, void *key)
1793{
1794 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1795 struct smap_psock *psock;
1796 int k = *(u32 *)key;
1797 struct sock *sock;
1798
1799 if (k >= map->max_entries)
1800 return -EINVAL;
1801
1802 raw_spin_lock_bh(&stab->lock);
1803 sock = stab->sock_map[k];
1804 stab->sock_map[k] = NULL;
1805 raw_spin_unlock_bh(&stab->lock);
1806 if (!sock)
1807 return -EINVAL;
1808
1809 psock = smap_psock_sk(sock);
1810 if (!psock)
1811 return 0;
1812 if (psock->bpf_parse) {
1813 write_lock_bh(&sock->sk_callback_lock);
1814 smap_stop_sock(psock, sock);
1815 write_unlock_bh(&sock->sk_callback_lock);
1816 }
1817 smap_list_map_remove(psock, &stab->sock_map[k]);
1818 smap_release_sock(psock, sock);
1819 return 0;
1820}
1821
1822/* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
1823 * done inside rcu critical sections. This ensures on updates that the psock
1824 * will not be released via smap_release_sock() until concurrent updates/deletes
1825 * complete. All operations operate on sock_map using cmpxchg and xchg
1826 * operations to ensure we do not get stale references. Any reads into the
1827 * map must be done with READ_ONCE() because of this.
1828 *
1829 * A psock is destroyed via call_rcu and after any worker threads are cancelled
1830 * and syncd so we are certain all references from the update/lookup/delete
1831 * operations as well as references in the data path are no longer in use.
1832 *
1833 * Psocks may exist in multiple maps, but only a single set of parse/verdict
1834 * programs may be inherited from the maps it belongs to. A reference count
1835 * is kept with the total number of references to the psock from all maps. The
1836 * psock will not be released until this reaches zero. The psock and sock
1837 * user data data use the sk_callback_lock to protect critical data structures
1838 * from concurrent access. This allows us to avoid two updates from modifying
1839 * the user data in sock and the lock is required anyways for modifying
1840 * callbacks, we simply increase its scope slightly.
1841 *
1842 * Rules to follow,
1843 * - psock must always be read inside RCU critical section
1844 * - sk_user_data must only be modified inside sk_callback_lock and read
1845 * inside RCU critical section.
1846 * - psock->maps list must only be read & modified inside sk_callback_lock
1847 * - sock_map must use READ_ONCE and (cmp)xchg operations
1848 * - BPF verdict/parse programs must use READ_ONCE and xchg operations
1849 */
1850
1851static int __sock_map_ctx_update_elem(struct bpf_map *map,
1852 struct bpf_sock_progs *progs,
1853 struct sock *sock,
1854 void *key)
1855{
1856 struct bpf_prog *verdict, *parse, *tx_msg;
1857 struct smap_psock *psock;
1858 bool new = false;
1859 int err = 0;
1860
1861 /* 1. If sock map has BPF programs those will be inherited by the
1862 * sock being added. If the sock is already attached to BPF programs
1863 * this results in an error.
1864 */
1865 verdict = READ_ONCE(progs->bpf_verdict);
1866 parse = READ_ONCE(progs->bpf_parse);
1867 tx_msg = READ_ONCE(progs->bpf_tx_msg);
1868
1869 if (parse && verdict) {
1870 /* bpf prog refcnt may be zero if a concurrent attach operation
1871 * removes the program after the above READ_ONCE() but before
1872 * we increment the refcnt. If this is the case abort with an
1873 * error.
1874 */
1875 verdict = bpf_prog_inc_not_zero(verdict);
1876 if (IS_ERR(verdict))
1877 return PTR_ERR(verdict);
1878
1879 parse = bpf_prog_inc_not_zero(parse);
1880 if (IS_ERR(parse)) {
1881 bpf_prog_put(verdict);
1882 return PTR_ERR(parse);
1883 }
1884 }
1885
1886 if (tx_msg) {
1887 tx_msg = bpf_prog_inc_not_zero(tx_msg);
1888 if (IS_ERR(tx_msg)) {
1889 if (parse && verdict) {
1890 bpf_prog_put(parse);
1891 bpf_prog_put(verdict);
1892 }
1893 return PTR_ERR(tx_msg);
1894 }
1895 }
1896
1897 psock = smap_psock_sk(sock);
1898
1899 /* 2. Do not allow inheriting programs if psock exists and has
1900 * already inherited programs. This would create confusion on
1901 * which parser/verdict program is running. If no psock exists
1902 * create one. Inside sk_callback_lock to ensure concurrent create
1903 * doesn't update user data.
1904 */
1905 if (psock) {
1906 if (!psock_is_smap_sk(sock)) {
1907 err = -EBUSY;
1908 goto out_progs;
1909 }
1910 if (READ_ONCE(psock->bpf_parse) && parse) {
1911 err = -EBUSY;
1912 goto out_progs;
1913 }
1914 if (READ_ONCE(psock->bpf_tx_msg) && tx_msg) {
1915 err = -EBUSY;
1916 goto out_progs;
1917 }
1918 if (!refcount_inc_not_zero(&psock->refcnt)) {
1919 err = -EAGAIN;
1920 goto out_progs;
1921 }
1922 } else {
1923 psock = smap_init_psock(sock, map->numa_node);
1924 if (IS_ERR(psock)) {
1925 err = PTR_ERR(psock);
1926 goto out_progs;
1927 }
1928
1929 set_bit(SMAP_TX_RUNNING, &psock->state);
1930 new = true;
1931 }
1932
1933 /* 3. At this point we have a reference to a valid psock that is
1934 * running. Attach any BPF programs needed.
1935 */
1936 if (tx_msg)
1937 bpf_tcp_msg_add(psock, sock, tx_msg);
1938 if (new) {
1939 err = bpf_tcp_init(sock);
1940 if (err)
1941 goto out_free;
1942 }
1943
1944 if (parse && verdict && !psock->strp_enabled) {
1945 err = smap_init_sock(psock, sock);
1946 if (err)
1947 goto out_free;
1948 smap_init_progs(psock, verdict, parse);
1949 write_lock_bh(&sock->sk_callback_lock);
1950 smap_start_sock(psock, sock);
1951 write_unlock_bh(&sock->sk_callback_lock);
1952 }
1953
1954 return err;
1955out_free:
1956 smap_release_sock(psock, sock);
1957out_progs:
1958 if (parse && verdict) {
1959 bpf_prog_put(parse);
1960 bpf_prog_put(verdict);
1961 }
1962 if (tx_msg)
1963 bpf_prog_put(tx_msg);
1964 return err;
1965}
1966
1967static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
1968 struct bpf_map *map,
1969 void *key, u64 flags)
1970{
1971 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
1972 struct bpf_sock_progs *progs = &stab->progs;
1973 struct sock *osock, *sock = skops->sk;
1974 struct smap_psock_map_entry *e;
1975 struct smap_psock *psock;
1976 u32 i = *(u32 *)key;
1977 int err;
1978
1979 if (unlikely(flags > BPF_EXIST))
1980 return -EINVAL;
1981 if (unlikely(i >= stab->map.max_entries))
1982 return -E2BIG;
1983
1984 e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
1985 if (!e)
1986 return -ENOMEM;
1987
1988 err = __sock_map_ctx_update_elem(map, progs, sock, key);
1989 if (err)
1990 goto out;
1991
1992 /* psock guaranteed to be present. */
1993 psock = smap_psock_sk(sock);
1994 raw_spin_lock_bh(&stab->lock);
1995 osock = stab->sock_map[i];
1996 if (osock && flags == BPF_NOEXIST) {
1997 err = -EEXIST;
1998 goto out_unlock;
1999 }
2000 if (!osock && flags == BPF_EXIST) {
2001 err = -ENOENT;
2002 goto out_unlock;
2003 }
2004
2005 e->entry = &stab->sock_map[i];
2006 e->map = map;
2007 spin_lock_bh(&psock->maps_lock);
2008 list_add_tail(&e->list, &psock->maps);
2009 spin_unlock_bh(&psock->maps_lock);
2010
2011 stab->sock_map[i] = sock;
2012 if (osock) {
2013 psock = smap_psock_sk(osock);
2014 smap_list_map_remove(psock, &stab->sock_map[i]);
2015 smap_release_sock(psock, osock);
2016 }
2017 raw_spin_unlock_bh(&stab->lock);
2018 return 0;
2019out_unlock:
2020 smap_release_sock(psock, sock);
2021 raw_spin_unlock_bh(&stab->lock);
2022out:
2023 kfree(e);
2024 return err;
2025}
2026
2027int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
2028{
2029 struct bpf_sock_progs *progs;
2030 struct bpf_prog *orig;
2031
2032 if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
2033 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
2034
2035 progs = &stab->progs;
2036 } else if (map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2037 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2038
2039 progs = &htab->progs;
2040 } else {
2041 return -EINVAL;
2042 }
2043
2044 switch (type) {
2045 case BPF_SK_MSG_VERDICT:
2046 orig = xchg(&progs->bpf_tx_msg, prog);
2047 break;
2048 case BPF_SK_SKB_STREAM_PARSER:
2049 orig = xchg(&progs->bpf_parse, prog);
2050 break;
2051 case BPF_SK_SKB_STREAM_VERDICT:
2052 orig = xchg(&progs->bpf_verdict, prog);
2053 break;
2054 default:
2055 return -EOPNOTSUPP;
2056 }
2057
2058 if (orig)
2059 bpf_prog_put(orig);
2060
2061 return 0;
2062}
2063
2064int sockmap_get_from_fd(const union bpf_attr *attr, int type,
2065 struct bpf_prog *prog)
2066{
2067 int ufd = attr->target_fd;
2068 struct bpf_map *map;
2069 struct fd f;
2070 int err;
2071
2072 f = fdget(ufd);
2073 map = __bpf_map_get(f);
2074 if (IS_ERR(map))
2075 return PTR_ERR(map);
2076
2077 err = sock_map_prog(map, prog, attr->attach_type);
2078 fdput(f);
2079 return err;
2080}
2081
2082static void *sock_map_lookup(struct bpf_map *map, void *key)
2083{
2084 return ERR_PTR(-EOPNOTSUPP);
2085}
2086
2087static int sock_map_update_elem(struct bpf_map *map,
2088 void *key, void *value, u64 flags)
2089{
2090 struct bpf_sock_ops_kern skops;
2091 u32 fd = *(u32 *)value;
2092 struct socket *socket;
2093 int err;
2094
2095 socket = sockfd_lookup(fd, &err);
2096 if (!socket)
2097 return err;
2098
2099 skops.sk = socket->sk;
2100 if (!skops.sk) {
2101 fput(socket->file);
2102 return -EINVAL;
2103 }
2104
2105 /* ULPs are currently supported only for TCP sockets in ESTABLISHED
2106 * state.
2107 */
2108 if (skops.sk->sk_type != SOCK_STREAM ||
2109 skops.sk->sk_protocol != IPPROTO_TCP ||
2110 skops.sk->sk_state != TCP_ESTABLISHED) {
2111 fput(socket->file);
2112 return -EOPNOTSUPP;
2113 }
2114
2115 lock_sock(skops.sk);
2116 preempt_disable();
2117 rcu_read_lock();
2118 err = sock_map_ctx_update_elem(&skops, map, key, flags);
2119 rcu_read_unlock();
2120 preempt_enable();
2121 release_sock(skops.sk);
2122 fput(socket->file);
2123 return err;
2124}
2125
2126static void sock_map_release(struct bpf_map *map)
2127{
2128 struct bpf_sock_progs *progs;
2129 struct bpf_prog *orig;
2130
2131 if (map->map_type == BPF_MAP_TYPE_SOCKMAP) {
2132 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
2133
2134 progs = &stab->progs;
2135 } else {
2136 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2137
2138 progs = &htab->progs;
2139 }
2140
2141 orig = xchg(&progs->bpf_parse, NULL);
2142 if (orig)
2143 bpf_prog_put(orig);
2144 orig = xchg(&progs->bpf_verdict, NULL);
2145 if (orig)
2146 bpf_prog_put(orig);
2147
2148 orig = xchg(&progs->bpf_tx_msg, NULL);
2149 if (orig)
2150 bpf_prog_put(orig);
2151}
2152
2153static struct bpf_map *sock_hash_alloc(union bpf_attr *attr)
2154{
2155 struct bpf_htab *htab;
2156 int i, err;
2157 u64 cost;
2158
2159 if (!capable(CAP_NET_ADMIN))
2160 return ERR_PTR(-EPERM);
2161
2162 /* check sanity of attributes */
2163 if (attr->max_entries == 0 ||
2164 attr->key_size == 0 ||
2165 attr->value_size != 4 ||
2166 attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
2167 return ERR_PTR(-EINVAL);
2168
2169 if (attr->key_size > MAX_BPF_STACK)
2170 /* eBPF programs initialize keys on stack, so they cannot be
2171 * larger than max stack size
2172 */
2173 return ERR_PTR(-E2BIG);
2174
2175 htab = kzalloc(sizeof(*htab), GFP_USER);
2176 if (!htab)
2177 return ERR_PTR(-ENOMEM);
2178
2179 bpf_map_init_from_attr(&htab->map, attr);
2180
2181 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
2182 htab->elem_size = sizeof(struct htab_elem) +
2183 round_up(htab->map.key_size, 8);
2184 err = -EINVAL;
2185 if (htab->n_buckets == 0 ||
2186 htab->n_buckets > U32_MAX / sizeof(struct bucket))
2187 goto free_htab;
2188
2189 cost = (u64) htab->n_buckets * sizeof(struct bucket) +
2190 (u64) htab->elem_size * htab->map.max_entries;
2191
2192 if (cost >= U32_MAX - PAGE_SIZE)
2193 goto free_htab;
2194
2195 htab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
2196 err = bpf_map_precharge_memlock(htab->map.pages);
2197 if (err)
2198 goto free_htab;
2199
2200 err = -ENOMEM;
2201 htab->buckets = bpf_map_area_alloc(
2202 htab->n_buckets * sizeof(struct bucket),
2203 htab->map.numa_node);
2204 if (!htab->buckets)
2205 goto free_htab;
2206
2207 for (i = 0; i < htab->n_buckets; i++) {
2208 INIT_HLIST_HEAD(&htab->buckets[i].head);
2209 raw_spin_lock_init(&htab->buckets[i].lock);
2210 }
2211
2212 return &htab->map;
2213free_htab:
2214 kfree(htab);
2215 return ERR_PTR(err);
2216}
2217
2218static void __bpf_htab_free(struct rcu_head *rcu)
2219{
2220 struct bpf_htab *htab;
2221
2222 htab = container_of(rcu, struct bpf_htab, rcu);
2223 bpf_map_area_free(htab->buckets);
2224 kfree(htab);
2225}
2226
2227static void sock_hash_free(struct bpf_map *map)
2228{
2229 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2230 int i;
2231
2232 synchronize_rcu();
2233
2234 /* At this point no update, lookup or delete operations can happen.
2235 * However, be aware we can still get a socket state event updates,
2236 * and data ready callabacks that reference the psock from sk_user_data
2237 * Also psock worker threads are still in-flight. So smap_release_sock
2238 * will only free the psock after cancel_sync on the worker threads
2239 * and a grace period expire to ensure psock is really safe to remove.
2240 */
2241 rcu_read_lock();
2242 for (i = 0; i < htab->n_buckets; i++) {
2243 struct bucket *b = __select_bucket(htab, i);
2244 struct hlist_head *head;
2245 struct hlist_node *n;
2246 struct htab_elem *l;
2247
2248 raw_spin_lock_bh(&b->lock);
2249 head = &b->head;
2250 hlist_for_each_entry_safe(l, n, head, hash_node) {
2251 struct sock *sock = l->sk;
2252 struct smap_psock *psock;
2253
2254 hlist_del_rcu(&l->hash_node);
2255 psock = smap_psock_sk(sock);
2256 /* This check handles a racing sock event that can get
2257 * the sk_callback_lock before this case but after xchg
2258 * causing the refcnt to hit zero and sock user data
2259 * (psock) to be null and queued for garbage collection.
2260 */
2261 if (likely(psock)) {
2262 smap_list_hash_remove(psock, l);
2263 smap_release_sock(psock, sock);
2264 }
2265 free_htab_elem(htab, l);
2266 }
2267 raw_spin_unlock_bh(&b->lock);
2268 }
2269 rcu_read_unlock();
2270 call_rcu(&htab->rcu, __bpf_htab_free);
2271}
2272
2273static struct htab_elem *alloc_sock_hash_elem(struct bpf_htab *htab,
2274 void *key, u32 key_size, u32 hash,
2275 struct sock *sk,
2276 struct htab_elem *old_elem)
2277{
2278 struct htab_elem *l_new;
2279
2280 if (atomic_inc_return(&htab->count) > htab->map.max_entries) {
2281 if (!old_elem) {
2282 atomic_dec(&htab->count);
2283 return ERR_PTR(-E2BIG);
2284 }
2285 }
2286 l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN,
2287 htab->map.numa_node);
2288 if (!l_new) {
2289 atomic_dec(&htab->count);
2290 return ERR_PTR(-ENOMEM);
2291 }
2292
2293 memcpy(l_new->key, key, key_size);
2294 l_new->sk = sk;
2295 l_new->hash = hash;
2296 return l_new;
2297}
2298
2299static inline u32 htab_map_hash(const void *key, u32 key_len)
2300{
2301 return jhash(key, key_len, 0);
2302}
2303
2304static int sock_hash_get_next_key(struct bpf_map *map,
2305 void *key, void *next_key)
2306{
2307 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2308 struct htab_elem *l, *next_l;
2309 struct hlist_head *h;
2310 u32 hash, key_size;
2311 int i = 0;
2312
2313 WARN_ON_ONCE(!rcu_read_lock_held());
2314
2315 key_size = map->key_size;
2316 if (!key)
2317 goto find_first_elem;
2318 hash = htab_map_hash(key, key_size);
2319 h = select_bucket(htab, hash);
2320
2321 l = lookup_elem_raw(h, hash, key, key_size);
2322 if (!l)
2323 goto find_first_elem;
2324 next_l = hlist_entry_safe(
2325 rcu_dereference_raw(hlist_next_rcu(&l->hash_node)),
2326 struct htab_elem, hash_node);
2327 if (next_l) {
2328 memcpy(next_key, next_l->key, key_size);
2329 return 0;
2330 }
2331
2332 /* no more elements in this hash list, go to the next bucket */
2333 i = hash & (htab->n_buckets - 1);
2334 i++;
2335
2336find_first_elem:
2337 /* iterate over buckets */
2338 for (; i < htab->n_buckets; i++) {
2339 h = select_bucket(htab, i);
2340
2341 /* pick first element in the bucket */
2342 next_l = hlist_entry_safe(
2343 rcu_dereference_raw(hlist_first_rcu(h)),
2344 struct htab_elem, hash_node);
2345 if (next_l) {
2346 /* if it's not empty, just return it */
2347 memcpy(next_key, next_l->key, key_size);
2348 return 0;
2349 }
2350 }
2351
2352 /* iterated over all buckets and all elements */
2353 return -ENOENT;
2354}
2355
2356static int sock_hash_ctx_update_elem(struct bpf_sock_ops_kern *skops,
2357 struct bpf_map *map,
2358 void *key, u64 map_flags)
2359{
2360 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2361 struct bpf_sock_progs *progs = &htab->progs;
2362 struct htab_elem *l_new = NULL, *l_old;
2363 struct smap_psock_map_entry *e = NULL;
2364 struct hlist_head *head;
2365 struct smap_psock *psock;
2366 u32 key_size, hash;
2367 struct sock *sock;
2368 struct bucket *b;
2369 int err;
2370
2371 sock = skops->sk;
2372
2373 if (sock->sk_type != SOCK_STREAM ||
2374 sock->sk_protocol != IPPROTO_TCP)
2375 return -EOPNOTSUPP;
2376
2377 if (unlikely(map_flags > BPF_EXIST))
2378 return -EINVAL;
2379
2380 e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
2381 if (!e)
2382 return -ENOMEM;
2383
2384 WARN_ON_ONCE(!rcu_read_lock_held());
2385 key_size = map->key_size;
2386 hash = htab_map_hash(key, key_size);
2387 b = __select_bucket(htab, hash);
2388 head = &b->head;
2389
2390 err = __sock_map_ctx_update_elem(map, progs, sock, key);
2391 if (err)
2392 goto err;
2393
2394 /* psock is valid here because otherwise above *ctx_update_elem would
2395 * have thrown an error. It is safe to skip error check.
2396 */
2397 psock = smap_psock_sk(sock);
2398 raw_spin_lock_bh(&b->lock);
2399 l_old = lookup_elem_raw(head, hash, key, key_size);
2400 if (l_old && map_flags == BPF_NOEXIST) {
2401 err = -EEXIST;
2402 goto bucket_err;
2403 }
2404 if (!l_old && map_flags == BPF_EXIST) {
2405 err = -ENOENT;
2406 goto bucket_err;
2407 }
2408
2409 l_new = alloc_sock_hash_elem(htab, key, key_size, hash, sock, l_old);
2410 if (IS_ERR(l_new)) {
2411 err = PTR_ERR(l_new);
2412 goto bucket_err;
2413 }
2414
2415 rcu_assign_pointer(e->hash_link, l_new);
2416 e->map = map;
2417 spin_lock_bh(&psock->maps_lock);
2418 list_add_tail(&e->list, &psock->maps);
2419 spin_unlock_bh(&psock->maps_lock);
2420
2421 /* add new element to the head of the list, so that
2422 * concurrent search will find it before old elem
2423 */
2424 hlist_add_head_rcu(&l_new->hash_node, head);
2425 if (l_old) {
2426 psock = smap_psock_sk(l_old->sk);
2427
2428 hlist_del_rcu(&l_old->hash_node);
2429 smap_list_hash_remove(psock, l_old);
2430 smap_release_sock(psock, l_old->sk);
2431 free_htab_elem(htab, l_old);
2432 }
2433 raw_spin_unlock_bh(&b->lock);
2434 return 0;
2435bucket_err:
2436 smap_release_sock(psock, sock);
2437 raw_spin_unlock_bh(&b->lock);
2438err:
2439 kfree(e);
2440 return err;
2441}
2442
2443static int sock_hash_update_elem(struct bpf_map *map,
2444 void *key, void *value, u64 flags)
2445{
2446 struct bpf_sock_ops_kern skops;
2447 u32 fd = *(u32 *)value;
2448 struct socket *socket;
2449 int err;
2450
2451 socket = sockfd_lookup(fd, &err);
2452 if (!socket)
2453 return err;
2454
2455 skops.sk = socket->sk;
2456 if (!skops.sk) {
2457 fput(socket->file);
2458 return -EINVAL;
2459 }
2460
2461 /* ULPs are currently supported only for TCP sockets in ESTABLISHED
2462 * state.
2463 */
2464 if (skops.sk->sk_type != SOCK_STREAM ||
2465 skops.sk->sk_protocol != IPPROTO_TCP ||
2466 skops.sk->sk_state != TCP_ESTABLISHED) {
2467 fput(socket->file);
2468 return -EOPNOTSUPP;
2469 }
2470
2471 lock_sock(skops.sk);
2472 preempt_disable();
2473 rcu_read_lock();
2474 err = sock_hash_ctx_update_elem(&skops, map, key, flags);
2475 rcu_read_unlock();
2476 preempt_enable();
2477 release_sock(skops.sk);
2478 fput(socket->file);
2479 return err;
2480}
2481
2482static int sock_hash_delete_elem(struct bpf_map *map, void *key)
2483{
2484 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2485 struct hlist_head *head;
2486 struct bucket *b;
2487 struct htab_elem *l;
2488 u32 hash, key_size;
2489 int ret = -ENOENT;
2490
2491 key_size = map->key_size;
2492 hash = htab_map_hash(key, key_size);
2493 b = __select_bucket(htab, hash);
2494 head = &b->head;
2495
2496 raw_spin_lock_bh(&b->lock);
2497 l = lookup_elem_raw(head, hash, key, key_size);
2498 if (l) {
2499 struct sock *sock = l->sk;
2500 struct smap_psock *psock;
2501
2502 hlist_del_rcu(&l->hash_node);
2503 psock = smap_psock_sk(sock);
2504 /* This check handles a racing sock event that can get the
2505 * sk_callback_lock before this case but after xchg happens
2506 * causing the refcnt to hit zero and sock user data (psock)
2507 * to be null and queued for garbage collection.
2508 */
2509 if (likely(psock)) {
2510 smap_list_hash_remove(psock, l);
2511 smap_release_sock(psock, sock);
2512 }
2513 free_htab_elem(htab, l);
2514 ret = 0;
2515 }
2516 raw_spin_unlock_bh(&b->lock);
2517 return ret;
2518}
2519
2520struct sock *__sock_hash_lookup_elem(struct bpf_map *map, void *key)
2521{
2522 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2523 struct hlist_head *head;
2524 struct htab_elem *l;
2525 u32 key_size, hash;
2526 struct bucket *b;
2527 struct sock *sk;
2528
2529 key_size = map->key_size;
2530 hash = htab_map_hash(key, key_size);
2531 b = __select_bucket(htab, hash);
2532 head = &b->head;
2533
2534 l = lookup_elem_raw(head, hash, key, key_size);
2535 sk = l ? l->sk : NULL;
2536 return sk;
2537}
2538
2539const struct bpf_map_ops sock_map_ops = {
2540 .map_alloc = sock_map_alloc,
2541 .map_free = sock_map_free,
2542 .map_lookup_elem = sock_map_lookup,
2543 .map_get_next_key = sock_map_get_next_key,
2544 .map_update_elem = sock_map_update_elem,
2545 .map_delete_elem = sock_map_delete_elem,
2546 .map_release_uref = sock_map_release,
2547 .map_check_btf = map_check_no_btf,
2548};
2549
2550const struct bpf_map_ops sock_hash_ops = {
2551 .map_alloc = sock_hash_alloc,
2552 .map_free = sock_hash_free,
2553 .map_lookup_elem = sock_map_lookup,
2554 .map_get_next_key = sock_hash_get_next_key,
2555 .map_update_elem = sock_hash_update_elem,
2556 .map_delete_elem = sock_hash_delete_elem,
2557 .map_release_uref = sock_map_release,
2558 .map_check_btf = map_check_no_btf,
2559};
2560
2561static bool bpf_is_valid_sock_op(struct bpf_sock_ops_kern *ops)
2562{
2563 return ops->op == BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB ||
2564 ops->op == BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB;
2565}
2566BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
2567 struct bpf_map *, map, void *, key, u64, flags)
2568{
2569 WARN_ON_ONCE(!rcu_read_lock_held());
2570
2571 /* ULPs are currently supported only for TCP sockets in ESTABLISHED
2572 * state. This checks that the sock ops triggering the update is
2573 * one indicating we are (or will be soon) in an ESTABLISHED state.
2574 */
2575 if (!bpf_is_valid_sock_op(bpf_sock))
2576 return -EOPNOTSUPP;
2577 return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
2578}
2579
2580const struct bpf_func_proto bpf_sock_map_update_proto = {
2581 .func = bpf_sock_map_update,
2582 .gpl_only = false,
2583 .pkt_access = true,
2584 .ret_type = RET_INTEGER,
2585 .arg1_type = ARG_PTR_TO_CTX,
2586 .arg2_type = ARG_CONST_MAP_PTR,
2587 .arg3_type = ARG_PTR_TO_MAP_KEY,
2588 .arg4_type = ARG_ANYTHING,
2589};
2590
2591BPF_CALL_4(bpf_sock_hash_update, struct bpf_sock_ops_kern *, bpf_sock,
2592 struct bpf_map *, map, void *, key, u64, flags)
2593{
2594 WARN_ON_ONCE(!rcu_read_lock_held());
2595
2596 if (!bpf_is_valid_sock_op(bpf_sock))
2597 return -EOPNOTSUPP;
2598 return sock_hash_ctx_update_elem(bpf_sock, map, key, flags);
2599}
2600
2601const struct bpf_func_proto bpf_sock_hash_update_proto = {
2602 .func = bpf_sock_hash_update,
2603 .gpl_only = false,
2604 .pkt_access = true,
2605 .ret_type = RET_INTEGER,
2606 .arg1_type = ARG_PTR_TO_CTX,
2607 .arg2_type = ARG_CONST_MAP_PTR,
2608 .arg3_type = ARG_PTR_TO_MAP_KEY,
2609 .arg4_type = ARG_ANYTHING,
2610};