diff options
Diffstat (limited to 'fs/ext4/crypto.c')
-rw-r--r-- | fs/ext4/crypto.c | 536 |
1 files changed, 0 insertions, 536 deletions
diff --git a/fs/ext4/crypto.c b/fs/ext4/crypto.c deleted file mode 100644 index 6a6c27373b54..000000000000 --- a/fs/ext4/crypto.c +++ /dev/null | |||
@@ -1,536 +0,0 @@ | |||
1 | /* | ||
2 | * linux/fs/ext4/crypto.c | ||
3 | * | ||
4 | * Copyright (C) 2015, Google, Inc. | ||
5 | * | ||
6 | * This contains encryption functions for ext4 | ||
7 | * | ||
8 | * Written by Michael Halcrow, 2014. | ||
9 | * | ||
10 | * Filename encryption additions | ||
11 | * Uday Savagaonkar, 2014 | ||
12 | * Encryption policy handling additions | ||
13 | * Ildar Muslukhov, 2014 | ||
14 | * | ||
15 | * This has not yet undergone a rigorous security audit. | ||
16 | * | ||
17 | * The usage of AES-XTS should conform to recommendations in NIST | ||
18 | * Special Publication 800-38E and IEEE P1619/D16. | ||
19 | */ | ||
20 | |||
21 | #include <crypto/skcipher.h> | ||
22 | #include <keys/user-type.h> | ||
23 | #include <keys/encrypted-type.h> | ||
24 | #include <linux/ecryptfs.h> | ||
25 | #include <linux/gfp.h> | ||
26 | #include <linux/kernel.h> | ||
27 | #include <linux/key.h> | ||
28 | #include <linux/list.h> | ||
29 | #include <linux/mempool.h> | ||
30 | #include <linux/module.h> | ||
31 | #include <linux/mutex.h> | ||
32 | #include <linux/random.h> | ||
33 | #include <linux/scatterlist.h> | ||
34 | #include <linux/spinlock_types.h> | ||
35 | #include <linux/namei.h> | ||
36 | |||
37 | #include "ext4_extents.h" | ||
38 | #include "xattr.h" | ||
39 | |||
40 | /* Encryption added and removed here! (L: */ | ||
41 | |||
42 | static unsigned int num_prealloc_crypto_pages = 32; | ||
43 | static unsigned int num_prealloc_crypto_ctxs = 128; | ||
44 | |||
45 | module_param(num_prealloc_crypto_pages, uint, 0444); | ||
46 | MODULE_PARM_DESC(num_prealloc_crypto_pages, | ||
47 | "Number of crypto pages to preallocate"); | ||
48 | module_param(num_prealloc_crypto_ctxs, uint, 0444); | ||
49 | MODULE_PARM_DESC(num_prealloc_crypto_ctxs, | ||
50 | "Number of crypto contexts to preallocate"); | ||
51 | |||
52 | static mempool_t *ext4_bounce_page_pool; | ||
53 | |||
54 | static LIST_HEAD(ext4_free_crypto_ctxs); | ||
55 | static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); | ||
56 | |||
57 | static struct kmem_cache *ext4_crypto_ctx_cachep; | ||
58 | struct kmem_cache *ext4_crypt_info_cachep; | ||
59 | |||
60 | /** | ||
61 | * ext4_release_crypto_ctx() - Releases an encryption context | ||
62 | * @ctx: The encryption context to release. | ||
63 | * | ||
64 | * If the encryption context was allocated from the pre-allocated pool, returns | ||
65 | * it to that pool. Else, frees it. | ||
66 | * | ||
67 | * If there's a bounce page in the context, this frees that. | ||
68 | */ | ||
69 | void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) | ||
70 | { | ||
71 | unsigned long flags; | ||
72 | |||
73 | if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page) | ||
74 | mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool); | ||
75 | ctx->w.bounce_page = NULL; | ||
76 | ctx->w.control_page = NULL; | ||
77 | if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { | ||
78 | kmem_cache_free(ext4_crypto_ctx_cachep, ctx); | ||
79 | } else { | ||
80 | spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); | ||
81 | list_add(&ctx->free_list, &ext4_free_crypto_ctxs); | ||
82 | spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); | ||
83 | } | ||
84 | } | ||
85 | |||
86 | /** | ||
87 | * ext4_get_crypto_ctx() - Gets an encryption context | ||
88 | * @inode: The inode for which we are doing the crypto | ||
89 | * | ||
90 | * Allocates and initializes an encryption context. | ||
91 | * | ||
92 | * Return: An allocated and initialized encryption context on success; error | ||
93 | * value or NULL otherwise. | ||
94 | */ | ||
95 | struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode, | ||
96 | gfp_t gfp_flags) | ||
97 | { | ||
98 | struct ext4_crypto_ctx *ctx = NULL; | ||
99 | int res = 0; | ||
100 | unsigned long flags; | ||
101 | struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; | ||
102 | |||
103 | if (ci == NULL) | ||
104 | return ERR_PTR(-ENOKEY); | ||
105 | |||
106 | /* | ||
107 | * We first try getting the ctx from a free list because in | ||
108 | * the common case the ctx will have an allocated and | ||
109 | * initialized crypto tfm, so it's probably a worthwhile | ||
110 | * optimization. For the bounce page, we first try getting it | ||
111 | * from the kernel allocator because that's just about as fast | ||
112 | * as getting it from a list and because a cache of free pages | ||
113 | * should generally be a "last resort" option for a filesystem | ||
114 | * to be able to do its job. | ||
115 | */ | ||
116 | spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); | ||
117 | ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, | ||
118 | struct ext4_crypto_ctx, free_list); | ||
119 | if (ctx) | ||
120 | list_del(&ctx->free_list); | ||
121 | spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); | ||
122 | if (!ctx) { | ||
123 | ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, gfp_flags); | ||
124 | if (!ctx) { | ||
125 | res = -ENOMEM; | ||
126 | goto out; | ||
127 | } | ||
128 | ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; | ||
129 | } else { | ||
130 | ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; | ||
131 | } | ||
132 | ctx->flags &= ~EXT4_WRITE_PATH_FL; | ||
133 | |||
134 | out: | ||
135 | if (res) { | ||
136 | if (!IS_ERR_OR_NULL(ctx)) | ||
137 | ext4_release_crypto_ctx(ctx); | ||
138 | ctx = ERR_PTR(res); | ||
139 | } | ||
140 | return ctx; | ||
141 | } | ||
142 | |||
143 | struct workqueue_struct *ext4_read_workqueue; | ||
144 | static DEFINE_MUTEX(crypto_init); | ||
145 | |||
146 | /** | ||
147 | * ext4_exit_crypto() - Shutdown the ext4 encryption system | ||
148 | */ | ||
149 | void ext4_exit_crypto(void) | ||
150 | { | ||
151 | struct ext4_crypto_ctx *pos, *n; | ||
152 | |||
153 | list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) | ||
154 | kmem_cache_free(ext4_crypto_ctx_cachep, pos); | ||
155 | INIT_LIST_HEAD(&ext4_free_crypto_ctxs); | ||
156 | if (ext4_bounce_page_pool) | ||
157 | mempool_destroy(ext4_bounce_page_pool); | ||
158 | ext4_bounce_page_pool = NULL; | ||
159 | if (ext4_read_workqueue) | ||
160 | destroy_workqueue(ext4_read_workqueue); | ||
161 | ext4_read_workqueue = NULL; | ||
162 | if (ext4_crypto_ctx_cachep) | ||
163 | kmem_cache_destroy(ext4_crypto_ctx_cachep); | ||
164 | ext4_crypto_ctx_cachep = NULL; | ||
165 | if (ext4_crypt_info_cachep) | ||
166 | kmem_cache_destroy(ext4_crypt_info_cachep); | ||
167 | ext4_crypt_info_cachep = NULL; | ||
168 | } | ||
169 | |||
170 | /** | ||
171 | * ext4_init_crypto() - Set up for ext4 encryption. | ||
172 | * | ||
173 | * We only call this when we start accessing encrypted files, since it | ||
174 | * results in memory getting allocated that wouldn't otherwise be used. | ||
175 | * | ||
176 | * Return: Zero on success, non-zero otherwise. | ||
177 | */ | ||
178 | int ext4_init_crypto(void) | ||
179 | { | ||
180 | int i, res = -ENOMEM; | ||
181 | |||
182 | mutex_lock(&crypto_init); | ||
183 | if (ext4_read_workqueue) | ||
184 | goto already_initialized; | ||
185 | ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); | ||
186 | if (!ext4_read_workqueue) | ||
187 | goto fail; | ||
188 | |||
189 | ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx, | ||
190 | SLAB_RECLAIM_ACCOUNT); | ||
191 | if (!ext4_crypto_ctx_cachep) | ||
192 | goto fail; | ||
193 | |||
194 | ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info, | ||
195 | SLAB_RECLAIM_ACCOUNT); | ||
196 | if (!ext4_crypt_info_cachep) | ||
197 | goto fail; | ||
198 | |||
199 | for (i = 0; i < num_prealloc_crypto_ctxs; i++) { | ||
200 | struct ext4_crypto_ctx *ctx; | ||
201 | |||
202 | ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS); | ||
203 | if (!ctx) { | ||
204 | res = -ENOMEM; | ||
205 | goto fail; | ||
206 | } | ||
207 | list_add(&ctx->free_list, &ext4_free_crypto_ctxs); | ||
208 | } | ||
209 | |||
210 | ext4_bounce_page_pool = | ||
211 | mempool_create_page_pool(num_prealloc_crypto_pages, 0); | ||
212 | if (!ext4_bounce_page_pool) { | ||
213 | res = -ENOMEM; | ||
214 | goto fail; | ||
215 | } | ||
216 | already_initialized: | ||
217 | mutex_unlock(&crypto_init); | ||
218 | return 0; | ||
219 | fail: | ||
220 | ext4_exit_crypto(); | ||
221 | mutex_unlock(&crypto_init); | ||
222 | return res; | ||
223 | } | ||
224 | |||
225 | void ext4_restore_control_page(struct page *data_page) | ||
226 | { | ||
227 | struct ext4_crypto_ctx *ctx = | ||
228 | (struct ext4_crypto_ctx *)page_private(data_page); | ||
229 | |||
230 | set_page_private(data_page, (unsigned long)NULL); | ||
231 | ClearPagePrivate(data_page); | ||
232 | unlock_page(data_page); | ||
233 | ext4_release_crypto_ctx(ctx); | ||
234 | } | ||
235 | |||
236 | /** | ||
237 | * ext4_crypt_complete() - The completion callback for page encryption | ||
238 | * @req: The asynchronous encryption request context | ||
239 | * @res: The result of the encryption operation | ||
240 | */ | ||
241 | static void ext4_crypt_complete(struct crypto_async_request *req, int res) | ||
242 | { | ||
243 | struct ext4_completion_result *ecr = req->data; | ||
244 | |||
245 | if (res == -EINPROGRESS) | ||
246 | return; | ||
247 | ecr->res = res; | ||
248 | complete(&ecr->completion); | ||
249 | } | ||
250 | |||
251 | typedef enum { | ||
252 | EXT4_DECRYPT = 0, | ||
253 | EXT4_ENCRYPT, | ||
254 | } ext4_direction_t; | ||
255 | |||
256 | static int ext4_page_crypto(struct inode *inode, | ||
257 | ext4_direction_t rw, | ||
258 | pgoff_t index, | ||
259 | struct page *src_page, | ||
260 | struct page *dest_page, | ||
261 | gfp_t gfp_flags) | ||
262 | |||
263 | { | ||
264 | u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; | ||
265 | struct skcipher_request *req = NULL; | ||
266 | DECLARE_EXT4_COMPLETION_RESULT(ecr); | ||
267 | struct scatterlist dst, src; | ||
268 | struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info; | ||
269 | struct crypto_skcipher *tfm = ci->ci_ctfm; | ||
270 | int res = 0; | ||
271 | |||
272 | req = skcipher_request_alloc(tfm, gfp_flags); | ||
273 | if (!req) { | ||
274 | printk_ratelimited(KERN_ERR | ||
275 | "%s: crypto_request_alloc() failed\n", | ||
276 | __func__); | ||
277 | return -ENOMEM; | ||
278 | } | ||
279 | skcipher_request_set_callback( | ||
280 | req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, | ||
281 | ext4_crypt_complete, &ecr); | ||
282 | |||
283 | BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); | ||
284 | memcpy(xts_tweak, &index, sizeof(index)); | ||
285 | memset(&xts_tweak[sizeof(index)], 0, | ||
286 | EXT4_XTS_TWEAK_SIZE - sizeof(index)); | ||
287 | |||
288 | sg_init_table(&dst, 1); | ||
289 | sg_set_page(&dst, dest_page, PAGE_SIZE, 0); | ||
290 | sg_init_table(&src, 1); | ||
291 | sg_set_page(&src, src_page, PAGE_SIZE, 0); | ||
292 | skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE, | ||
293 | xts_tweak); | ||
294 | if (rw == EXT4_DECRYPT) | ||
295 | res = crypto_skcipher_decrypt(req); | ||
296 | else | ||
297 | res = crypto_skcipher_encrypt(req); | ||
298 | if (res == -EINPROGRESS || res == -EBUSY) { | ||
299 | wait_for_completion(&ecr.completion); | ||
300 | res = ecr.res; | ||
301 | } | ||
302 | skcipher_request_free(req); | ||
303 | if (res) { | ||
304 | printk_ratelimited( | ||
305 | KERN_ERR | ||
306 | "%s: crypto_skcipher_encrypt() returned %d\n", | ||
307 | __func__, res); | ||
308 | return res; | ||
309 | } | ||
310 | return 0; | ||
311 | } | ||
312 | |||
313 | static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx, | ||
314 | gfp_t gfp_flags) | ||
315 | { | ||
316 | ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, gfp_flags); | ||
317 | if (ctx->w.bounce_page == NULL) | ||
318 | return ERR_PTR(-ENOMEM); | ||
319 | ctx->flags |= EXT4_WRITE_PATH_FL; | ||
320 | return ctx->w.bounce_page; | ||
321 | } | ||
322 | |||
323 | /** | ||
324 | * ext4_encrypt() - Encrypts a page | ||
325 | * @inode: The inode for which the encryption should take place | ||
326 | * @plaintext_page: The page to encrypt. Must be locked. | ||
327 | * | ||
328 | * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx | ||
329 | * encryption context. | ||
330 | * | ||
331 | * Called on the page write path. The caller must call | ||
332 | * ext4_restore_control_page() on the returned ciphertext page to | ||
333 | * release the bounce buffer and the encryption context. | ||
334 | * | ||
335 | * Return: An allocated page with the encrypted content on success. Else, an | ||
336 | * error value or NULL. | ||
337 | */ | ||
338 | struct page *ext4_encrypt(struct inode *inode, | ||
339 | struct page *plaintext_page, | ||
340 | gfp_t gfp_flags) | ||
341 | { | ||
342 | struct ext4_crypto_ctx *ctx; | ||
343 | struct page *ciphertext_page = NULL; | ||
344 | int err; | ||
345 | |||
346 | BUG_ON(!PageLocked(plaintext_page)); | ||
347 | |||
348 | ctx = ext4_get_crypto_ctx(inode, gfp_flags); | ||
349 | if (IS_ERR(ctx)) | ||
350 | return (struct page *) ctx; | ||
351 | |||
352 | /* The encryption operation will require a bounce page. */ | ||
353 | ciphertext_page = alloc_bounce_page(ctx, gfp_flags); | ||
354 | if (IS_ERR(ciphertext_page)) | ||
355 | goto errout; | ||
356 | ctx->w.control_page = plaintext_page; | ||
357 | err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index, | ||
358 | plaintext_page, ciphertext_page, gfp_flags); | ||
359 | if (err) { | ||
360 | ciphertext_page = ERR_PTR(err); | ||
361 | errout: | ||
362 | ext4_release_crypto_ctx(ctx); | ||
363 | return ciphertext_page; | ||
364 | } | ||
365 | SetPagePrivate(ciphertext_page); | ||
366 | set_page_private(ciphertext_page, (unsigned long)ctx); | ||
367 | lock_page(ciphertext_page); | ||
368 | return ciphertext_page; | ||
369 | } | ||
370 | |||
371 | /** | ||
372 | * ext4_decrypt() - Decrypts a page in-place | ||
373 | * @ctx: The encryption context. | ||
374 | * @page: The page to decrypt. Must be locked. | ||
375 | * | ||
376 | * Decrypts page in-place using the ctx encryption context. | ||
377 | * | ||
378 | * Called from the read completion callback. | ||
379 | * | ||
380 | * Return: Zero on success, non-zero otherwise. | ||
381 | */ | ||
382 | int ext4_decrypt(struct page *page) | ||
383 | { | ||
384 | BUG_ON(!PageLocked(page)); | ||
385 | |||
386 | return ext4_page_crypto(page->mapping->host, EXT4_DECRYPT, | ||
387 | page->index, page, page, GFP_NOFS); | ||
388 | } | ||
389 | |||
390 | int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk, | ||
391 | ext4_fsblk_t pblk, ext4_lblk_t len) | ||
392 | { | ||
393 | struct ext4_crypto_ctx *ctx; | ||
394 | struct page *ciphertext_page = NULL; | ||
395 | struct bio *bio; | ||
396 | int ret, err = 0; | ||
397 | |||
398 | #if 0 | ||
399 | ext4_msg(inode->i_sb, KERN_CRIT, | ||
400 | "ext4_encrypted_zeroout ino %lu lblk %u len %u", | ||
401 | (unsigned long) inode->i_ino, lblk, len); | ||
402 | #endif | ||
403 | |||
404 | BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE); | ||
405 | |||
406 | ctx = ext4_get_crypto_ctx(inode, GFP_NOFS); | ||
407 | if (IS_ERR(ctx)) | ||
408 | return PTR_ERR(ctx); | ||
409 | |||
410 | ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT); | ||
411 | if (IS_ERR(ciphertext_page)) { | ||
412 | err = PTR_ERR(ciphertext_page); | ||
413 | goto errout; | ||
414 | } | ||
415 | |||
416 | while (len--) { | ||
417 | err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk, | ||
418 | ZERO_PAGE(0), ciphertext_page, | ||
419 | GFP_NOFS); | ||
420 | if (err) | ||
421 | goto errout; | ||
422 | |||
423 | bio = bio_alloc(GFP_NOWAIT, 1); | ||
424 | if (!bio) { | ||
425 | err = -ENOMEM; | ||
426 | goto errout; | ||
427 | } | ||
428 | bio->bi_bdev = inode->i_sb->s_bdev; | ||
429 | bio->bi_iter.bi_sector = | ||
430 | pblk << (inode->i_sb->s_blocksize_bits - 9); | ||
431 | ret = bio_add_page(bio, ciphertext_page, | ||
432 | inode->i_sb->s_blocksize, 0); | ||
433 | if (ret != inode->i_sb->s_blocksize) { | ||
434 | /* should never happen! */ | ||
435 | ext4_msg(inode->i_sb, KERN_ERR, | ||
436 | "bio_add_page failed: %d", ret); | ||
437 | WARN_ON(1); | ||
438 | bio_put(bio); | ||
439 | err = -EIO; | ||
440 | goto errout; | ||
441 | } | ||
442 | err = submit_bio_wait(WRITE, bio); | ||
443 | if ((err == 0) && bio->bi_error) | ||
444 | err = -EIO; | ||
445 | bio_put(bio); | ||
446 | if (err) | ||
447 | goto errout; | ||
448 | lblk++; pblk++; | ||
449 | } | ||
450 | err = 0; | ||
451 | errout: | ||
452 | ext4_release_crypto_ctx(ctx); | ||
453 | return err; | ||
454 | } | ||
455 | |||
456 | bool ext4_valid_contents_enc_mode(uint32_t mode) | ||
457 | { | ||
458 | return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); | ||
459 | } | ||
460 | |||
461 | /** | ||
462 | * ext4_validate_encryption_key_size() - Validate the encryption key size | ||
463 | * @mode: The key mode. | ||
464 | * @size: The key size to validate. | ||
465 | * | ||
466 | * Return: The validated key size for @mode. Zero if invalid. | ||
467 | */ | ||
468 | uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) | ||
469 | { | ||
470 | if (size == ext4_encryption_key_size(mode)) | ||
471 | return size; | ||
472 | return 0; | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * Validate dentries for encrypted directories to make sure we aren't | ||
477 | * potentially caching stale data after a key has been added or | ||
478 | * removed. | ||
479 | */ | ||
480 | static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags) | ||
481 | { | ||
482 | struct dentry *dir; | ||
483 | struct ext4_crypt_info *ci; | ||
484 | int dir_has_key, cached_with_key; | ||
485 | |||
486 | if (flags & LOOKUP_RCU) | ||
487 | return -ECHILD; | ||
488 | |||
489 | dir = dget_parent(dentry); | ||
490 | if (!ext4_encrypted_inode(d_inode(dir))) { | ||
491 | dput(dir); | ||
492 | return 0; | ||
493 | } | ||
494 | ci = EXT4_I(d_inode(dir))->i_crypt_info; | ||
495 | if (ci && ci->ci_keyring_key && | ||
496 | (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | | ||
497 | (1 << KEY_FLAG_REVOKED) | | ||
498 | (1 << KEY_FLAG_DEAD)))) | ||
499 | ci = NULL; | ||
500 | |||
501 | /* this should eventually be an flag in d_flags */ | ||
502 | cached_with_key = dentry->d_fsdata != NULL; | ||
503 | dir_has_key = (ci != NULL); | ||
504 | dput(dir); | ||
505 | |||
506 | /* | ||
507 | * If the dentry was cached without the key, and it is a | ||
508 | * negative dentry, it might be a valid name. We can't check | ||
509 | * if the key has since been made available due to locking | ||
510 | * reasons, so we fail the validation so ext4_lookup() can do | ||
511 | * this check. | ||
512 | * | ||
513 | * We also fail the validation if the dentry was created with | ||
514 | * the key present, but we no longer have the key, or vice versa. | ||
515 | */ | ||
516 | if ((!cached_with_key && d_is_negative(dentry)) || | ||
517 | (!cached_with_key && dir_has_key) || | ||
518 | (cached_with_key && !dir_has_key)) { | ||
519 | #if 0 /* Revalidation debug */ | ||
520 | char buf[80]; | ||
521 | char *cp = simple_dname(dentry, buf, sizeof(buf)); | ||
522 | |||
523 | if (IS_ERR(cp)) | ||
524 | cp = (char *) "???"; | ||
525 | pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata, | ||
526 | cached_with_key, d_is_negative(dentry), | ||
527 | dir_has_key); | ||
528 | #endif | ||
529 | return 0; | ||
530 | } | ||
531 | return 1; | ||
532 | } | ||
533 | |||
534 | const struct dentry_operations ext4_encrypted_d_ops = { | ||
535 | .d_revalidate = ext4_d_revalidate, | ||
536 | }; | ||