diff options
Diffstat (limited to 'fs/btrfs/raid56.c')
-rw-r--r-- | fs/btrfs/raid56.c | 2080 |
1 files changed, 2080 insertions, 0 deletions
diff --git a/fs/btrfs/raid56.c b/fs/btrfs/raid56.c new file mode 100644 index 000000000000..e34e568534d9 --- /dev/null +++ b/fs/btrfs/raid56.c | |||
@@ -0,0 +1,2080 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2012 Fusion-io All rights reserved. | ||
3 | * Copyright (C) 2012 Intel Corp. All rights reserved. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or | ||
6 | * modify it under the terms of the GNU General Public | ||
7 | * License v2 as published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
12 | * General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public | ||
15 | * License along with this program; if not, write to the | ||
16 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
17 | * Boston, MA 021110-1307, USA. | ||
18 | */ | ||
19 | #include <linux/sched.h> | ||
20 | #include <linux/wait.h> | ||
21 | #include <linux/bio.h> | ||
22 | #include <linux/slab.h> | ||
23 | #include <linux/buffer_head.h> | ||
24 | #include <linux/blkdev.h> | ||
25 | #include <linux/random.h> | ||
26 | #include <linux/iocontext.h> | ||
27 | #include <linux/capability.h> | ||
28 | #include <linux/ratelimit.h> | ||
29 | #include <linux/kthread.h> | ||
30 | #include <linux/raid/pq.h> | ||
31 | #include <linux/hash.h> | ||
32 | #include <linux/list_sort.h> | ||
33 | #include <linux/raid/xor.h> | ||
34 | #include <asm/div64.h> | ||
35 | #include "compat.h" | ||
36 | #include "ctree.h" | ||
37 | #include "extent_map.h" | ||
38 | #include "disk-io.h" | ||
39 | #include "transaction.h" | ||
40 | #include "print-tree.h" | ||
41 | #include "volumes.h" | ||
42 | #include "raid56.h" | ||
43 | #include "async-thread.h" | ||
44 | #include "check-integrity.h" | ||
45 | #include "rcu-string.h" | ||
46 | |||
47 | /* set when additional merges to this rbio are not allowed */ | ||
48 | #define RBIO_RMW_LOCKED_BIT 1 | ||
49 | |||
50 | /* | ||
51 | * set when this rbio is sitting in the hash, but it is just a cache | ||
52 | * of past RMW | ||
53 | */ | ||
54 | #define RBIO_CACHE_BIT 2 | ||
55 | |||
56 | /* | ||
57 | * set when it is safe to trust the stripe_pages for caching | ||
58 | */ | ||
59 | #define RBIO_CACHE_READY_BIT 3 | ||
60 | |||
61 | |||
62 | #define RBIO_CACHE_SIZE 1024 | ||
63 | |||
64 | struct btrfs_raid_bio { | ||
65 | struct btrfs_fs_info *fs_info; | ||
66 | struct btrfs_bio *bbio; | ||
67 | |||
68 | /* | ||
69 | * logical block numbers for the start of each stripe | ||
70 | * The last one or two are p/q. These are sorted, | ||
71 | * so raid_map[0] is the start of our full stripe | ||
72 | */ | ||
73 | u64 *raid_map; | ||
74 | |||
75 | /* while we're doing rmw on a stripe | ||
76 | * we put it into a hash table so we can | ||
77 | * lock the stripe and merge more rbios | ||
78 | * into it. | ||
79 | */ | ||
80 | struct list_head hash_list; | ||
81 | |||
82 | /* | ||
83 | * LRU list for the stripe cache | ||
84 | */ | ||
85 | struct list_head stripe_cache; | ||
86 | |||
87 | /* | ||
88 | * for scheduling work in the helper threads | ||
89 | */ | ||
90 | struct btrfs_work work; | ||
91 | |||
92 | /* | ||
93 | * bio list and bio_list_lock are used | ||
94 | * to add more bios into the stripe | ||
95 | * in hopes of avoiding the full rmw | ||
96 | */ | ||
97 | struct bio_list bio_list; | ||
98 | spinlock_t bio_list_lock; | ||
99 | |||
100 | /* also protected by the bio_list_lock, the | ||
101 | * plug list is used by the plugging code | ||
102 | * to collect partial bios while plugged. The | ||
103 | * stripe locking code also uses it to hand off | ||
104 | * the stripe lock to the next pending IO | ||
105 | */ | ||
106 | struct list_head plug_list; | ||
107 | |||
108 | /* | ||
109 | * flags that tell us if it is safe to | ||
110 | * merge with this bio | ||
111 | */ | ||
112 | unsigned long flags; | ||
113 | |||
114 | /* size of each individual stripe on disk */ | ||
115 | int stripe_len; | ||
116 | |||
117 | /* number of data stripes (no p/q) */ | ||
118 | int nr_data; | ||
119 | |||
120 | /* | ||
121 | * set if we're doing a parity rebuild | ||
122 | * for a read from higher up, which is handled | ||
123 | * differently from a parity rebuild as part of | ||
124 | * rmw | ||
125 | */ | ||
126 | int read_rebuild; | ||
127 | |||
128 | /* first bad stripe */ | ||
129 | int faila; | ||
130 | |||
131 | /* second bad stripe (for raid6 use) */ | ||
132 | int failb; | ||
133 | |||
134 | /* | ||
135 | * number of pages needed to represent the full | ||
136 | * stripe | ||
137 | */ | ||
138 | int nr_pages; | ||
139 | |||
140 | /* | ||
141 | * size of all the bios in the bio_list. This | ||
142 | * helps us decide if the rbio maps to a full | ||
143 | * stripe or not | ||
144 | */ | ||
145 | int bio_list_bytes; | ||
146 | |||
147 | atomic_t refs; | ||
148 | |||
149 | /* | ||
150 | * these are two arrays of pointers. We allocate the | ||
151 | * rbio big enough to hold them both and setup their | ||
152 | * locations when the rbio is allocated | ||
153 | */ | ||
154 | |||
155 | /* pointers to pages that we allocated for | ||
156 | * reading/writing stripes directly from the disk (including P/Q) | ||
157 | */ | ||
158 | struct page **stripe_pages; | ||
159 | |||
160 | /* | ||
161 | * pointers to the pages in the bio_list. Stored | ||
162 | * here for faster lookup | ||
163 | */ | ||
164 | struct page **bio_pages; | ||
165 | }; | ||
166 | |||
167 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); | ||
168 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); | ||
169 | static void rmw_work(struct btrfs_work *work); | ||
170 | static void read_rebuild_work(struct btrfs_work *work); | ||
171 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio); | ||
172 | static void async_read_rebuild(struct btrfs_raid_bio *rbio); | ||
173 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); | ||
174 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); | ||
175 | static void __free_raid_bio(struct btrfs_raid_bio *rbio); | ||
176 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | ||
177 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | ||
178 | |||
179 | /* | ||
180 | * the stripe hash table is used for locking, and to collect | ||
181 | * bios in hopes of making a full stripe | ||
182 | */ | ||
183 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | ||
184 | { | ||
185 | struct btrfs_stripe_hash_table *table; | ||
186 | struct btrfs_stripe_hash_table *x; | ||
187 | struct btrfs_stripe_hash *cur; | ||
188 | struct btrfs_stripe_hash *h; | ||
189 | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; | ||
190 | int i; | ||
191 | |||
192 | if (info->stripe_hash_table) | ||
193 | return 0; | ||
194 | |||
195 | table = kzalloc(sizeof(*table) + sizeof(*h) * num_entries, GFP_NOFS); | ||
196 | if (!table) | ||
197 | return -ENOMEM; | ||
198 | |||
199 | spin_lock_init(&table->cache_lock); | ||
200 | INIT_LIST_HEAD(&table->stripe_cache); | ||
201 | |||
202 | h = table->table; | ||
203 | |||
204 | for (i = 0; i < num_entries; i++) { | ||
205 | cur = h + i; | ||
206 | INIT_LIST_HEAD(&cur->hash_list); | ||
207 | spin_lock_init(&cur->lock); | ||
208 | init_waitqueue_head(&cur->wait); | ||
209 | } | ||
210 | |||
211 | x = cmpxchg(&info->stripe_hash_table, NULL, table); | ||
212 | if (x) | ||
213 | kfree(x); | ||
214 | return 0; | ||
215 | } | ||
216 | |||
217 | /* | ||
218 | * caching an rbio means to copy anything from the | ||
219 | * bio_pages array into the stripe_pages array. We | ||
220 | * use the page uptodate bit in the stripe cache array | ||
221 | * to indicate if it has valid data | ||
222 | * | ||
223 | * once the caching is done, we set the cache ready | ||
224 | * bit. | ||
225 | */ | ||
226 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | ||
227 | { | ||
228 | int i; | ||
229 | char *s; | ||
230 | char *d; | ||
231 | int ret; | ||
232 | |||
233 | ret = alloc_rbio_pages(rbio); | ||
234 | if (ret) | ||
235 | return; | ||
236 | |||
237 | for (i = 0; i < rbio->nr_pages; i++) { | ||
238 | if (!rbio->bio_pages[i]) | ||
239 | continue; | ||
240 | |||
241 | s = kmap(rbio->bio_pages[i]); | ||
242 | d = kmap(rbio->stripe_pages[i]); | ||
243 | |||
244 | memcpy(d, s, PAGE_CACHE_SIZE); | ||
245 | |||
246 | kunmap(rbio->bio_pages[i]); | ||
247 | kunmap(rbio->stripe_pages[i]); | ||
248 | SetPageUptodate(rbio->stripe_pages[i]); | ||
249 | } | ||
250 | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | ||
251 | } | ||
252 | |||
253 | /* | ||
254 | * we hash on the first logical address of the stripe | ||
255 | */ | ||
256 | static int rbio_bucket(struct btrfs_raid_bio *rbio) | ||
257 | { | ||
258 | u64 num = rbio->raid_map[0]; | ||
259 | |||
260 | /* | ||
261 | * we shift down quite a bit. We're using byte | ||
262 | * addressing, and most of the lower bits are zeros. | ||
263 | * This tends to upset hash_64, and it consistently | ||
264 | * returns just one or two different values. | ||
265 | * | ||
266 | * shifting off the lower bits fixes things. | ||
267 | */ | ||
268 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | ||
269 | } | ||
270 | |||
271 | /* | ||
272 | * stealing an rbio means taking all the uptodate pages from the stripe | ||
273 | * array in the source rbio and putting them into the destination rbio | ||
274 | */ | ||
275 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | ||
276 | { | ||
277 | int i; | ||
278 | struct page *s; | ||
279 | struct page *d; | ||
280 | |||
281 | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | ||
282 | return; | ||
283 | |||
284 | for (i = 0; i < dest->nr_pages; i++) { | ||
285 | s = src->stripe_pages[i]; | ||
286 | if (!s || !PageUptodate(s)) { | ||
287 | continue; | ||
288 | } | ||
289 | |||
290 | d = dest->stripe_pages[i]; | ||
291 | if (d) | ||
292 | __free_page(d); | ||
293 | |||
294 | dest->stripe_pages[i] = s; | ||
295 | src->stripe_pages[i] = NULL; | ||
296 | } | ||
297 | } | ||
298 | |||
299 | /* | ||
300 | * merging means we take the bio_list from the victim and | ||
301 | * splice it into the destination. The victim should | ||
302 | * be discarded afterwards. | ||
303 | * | ||
304 | * must be called with dest->rbio_list_lock held | ||
305 | */ | ||
306 | static void merge_rbio(struct btrfs_raid_bio *dest, | ||
307 | struct btrfs_raid_bio *victim) | ||
308 | { | ||
309 | bio_list_merge(&dest->bio_list, &victim->bio_list); | ||
310 | dest->bio_list_bytes += victim->bio_list_bytes; | ||
311 | bio_list_init(&victim->bio_list); | ||
312 | } | ||
313 | |||
314 | /* | ||
315 | * used to prune items that are in the cache. The caller | ||
316 | * must hold the hash table lock. | ||
317 | */ | ||
318 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | ||
319 | { | ||
320 | int bucket = rbio_bucket(rbio); | ||
321 | struct btrfs_stripe_hash_table *table; | ||
322 | struct btrfs_stripe_hash *h; | ||
323 | int freeit = 0; | ||
324 | |||
325 | /* | ||
326 | * check the bit again under the hash table lock. | ||
327 | */ | ||
328 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | ||
329 | return; | ||
330 | |||
331 | table = rbio->fs_info->stripe_hash_table; | ||
332 | h = table->table + bucket; | ||
333 | |||
334 | /* hold the lock for the bucket because we may be | ||
335 | * removing it from the hash table | ||
336 | */ | ||
337 | spin_lock(&h->lock); | ||
338 | |||
339 | /* | ||
340 | * hold the lock for the bio list because we need | ||
341 | * to make sure the bio list is empty | ||
342 | */ | ||
343 | spin_lock(&rbio->bio_list_lock); | ||
344 | |||
345 | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | ||
346 | list_del_init(&rbio->stripe_cache); | ||
347 | table->cache_size -= 1; | ||
348 | freeit = 1; | ||
349 | |||
350 | /* if the bio list isn't empty, this rbio is | ||
351 | * still involved in an IO. We take it out | ||
352 | * of the cache list, and drop the ref that | ||
353 | * was held for the list. | ||
354 | * | ||
355 | * If the bio_list was empty, we also remove | ||
356 | * the rbio from the hash_table, and drop | ||
357 | * the corresponding ref | ||
358 | */ | ||
359 | if (bio_list_empty(&rbio->bio_list)) { | ||
360 | if (!list_empty(&rbio->hash_list)) { | ||
361 | list_del_init(&rbio->hash_list); | ||
362 | atomic_dec(&rbio->refs); | ||
363 | BUG_ON(!list_empty(&rbio->plug_list)); | ||
364 | } | ||
365 | } | ||
366 | } | ||
367 | |||
368 | spin_unlock(&rbio->bio_list_lock); | ||
369 | spin_unlock(&h->lock); | ||
370 | |||
371 | if (freeit) | ||
372 | __free_raid_bio(rbio); | ||
373 | } | ||
374 | |||
375 | /* | ||
376 | * prune a given rbio from the cache | ||
377 | */ | ||
378 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | ||
379 | { | ||
380 | struct btrfs_stripe_hash_table *table; | ||
381 | unsigned long flags; | ||
382 | |||
383 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | ||
384 | return; | ||
385 | |||
386 | table = rbio->fs_info->stripe_hash_table; | ||
387 | |||
388 | spin_lock_irqsave(&table->cache_lock, flags); | ||
389 | __remove_rbio_from_cache(rbio); | ||
390 | spin_unlock_irqrestore(&table->cache_lock, flags); | ||
391 | } | ||
392 | |||
393 | /* | ||
394 | * remove everything in the cache | ||
395 | */ | ||
396 | void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) | ||
397 | { | ||
398 | struct btrfs_stripe_hash_table *table; | ||
399 | unsigned long flags; | ||
400 | struct btrfs_raid_bio *rbio; | ||
401 | |||
402 | table = info->stripe_hash_table; | ||
403 | |||
404 | spin_lock_irqsave(&table->cache_lock, flags); | ||
405 | while (!list_empty(&table->stripe_cache)) { | ||
406 | rbio = list_entry(table->stripe_cache.next, | ||
407 | struct btrfs_raid_bio, | ||
408 | stripe_cache); | ||
409 | __remove_rbio_from_cache(rbio); | ||
410 | } | ||
411 | spin_unlock_irqrestore(&table->cache_lock, flags); | ||
412 | } | ||
413 | |||
414 | /* | ||
415 | * remove all cached entries and free the hash table | ||
416 | * used by unmount | ||
417 | */ | ||
418 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | ||
419 | { | ||
420 | if (!info->stripe_hash_table) | ||
421 | return; | ||
422 | btrfs_clear_rbio_cache(info); | ||
423 | kfree(info->stripe_hash_table); | ||
424 | info->stripe_hash_table = NULL; | ||
425 | } | ||
426 | |||
427 | /* | ||
428 | * insert an rbio into the stripe cache. It | ||
429 | * must have already been prepared by calling | ||
430 | * cache_rbio_pages | ||
431 | * | ||
432 | * If this rbio was already cached, it gets | ||
433 | * moved to the front of the lru. | ||
434 | * | ||
435 | * If the size of the rbio cache is too big, we | ||
436 | * prune an item. | ||
437 | */ | ||
438 | static void cache_rbio(struct btrfs_raid_bio *rbio) | ||
439 | { | ||
440 | struct btrfs_stripe_hash_table *table; | ||
441 | unsigned long flags; | ||
442 | |||
443 | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | ||
444 | return; | ||
445 | |||
446 | table = rbio->fs_info->stripe_hash_table; | ||
447 | |||
448 | spin_lock_irqsave(&table->cache_lock, flags); | ||
449 | spin_lock(&rbio->bio_list_lock); | ||
450 | |||
451 | /* bump our ref if we were not in the list before */ | ||
452 | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | ||
453 | atomic_inc(&rbio->refs); | ||
454 | |||
455 | if (!list_empty(&rbio->stripe_cache)){ | ||
456 | list_move(&rbio->stripe_cache, &table->stripe_cache); | ||
457 | } else { | ||
458 | list_add(&rbio->stripe_cache, &table->stripe_cache); | ||
459 | table->cache_size += 1; | ||
460 | } | ||
461 | |||
462 | spin_unlock(&rbio->bio_list_lock); | ||
463 | |||
464 | if (table->cache_size > RBIO_CACHE_SIZE) { | ||
465 | struct btrfs_raid_bio *found; | ||
466 | |||
467 | found = list_entry(table->stripe_cache.prev, | ||
468 | struct btrfs_raid_bio, | ||
469 | stripe_cache); | ||
470 | |||
471 | if (found != rbio) | ||
472 | __remove_rbio_from_cache(found); | ||
473 | } | ||
474 | |||
475 | spin_unlock_irqrestore(&table->cache_lock, flags); | ||
476 | return; | ||
477 | } | ||
478 | |||
479 | /* | ||
480 | * helper function to run the xor_blocks api. It is only | ||
481 | * able to do MAX_XOR_BLOCKS at a time, so we need to | ||
482 | * loop through. | ||
483 | */ | ||
484 | static void run_xor(void **pages, int src_cnt, ssize_t len) | ||
485 | { | ||
486 | int src_off = 0; | ||
487 | int xor_src_cnt = 0; | ||
488 | void *dest = pages[src_cnt]; | ||
489 | |||
490 | while(src_cnt > 0) { | ||
491 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | ||
492 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); | ||
493 | |||
494 | src_cnt -= xor_src_cnt; | ||
495 | src_off += xor_src_cnt; | ||
496 | } | ||
497 | } | ||
498 | |||
499 | /* | ||
500 | * returns true if the bio list inside this rbio | ||
501 | * covers an entire stripe (no rmw required). | ||
502 | * Must be called with the bio list lock held, or | ||
503 | * at a time when you know it is impossible to add | ||
504 | * new bios into the list | ||
505 | */ | ||
506 | static int __rbio_is_full(struct btrfs_raid_bio *rbio) | ||
507 | { | ||
508 | unsigned long size = rbio->bio_list_bytes; | ||
509 | int ret = 1; | ||
510 | |||
511 | if (size != rbio->nr_data * rbio->stripe_len) | ||
512 | ret = 0; | ||
513 | |||
514 | BUG_ON(size > rbio->nr_data * rbio->stripe_len); | ||
515 | return ret; | ||
516 | } | ||
517 | |||
518 | static int rbio_is_full(struct btrfs_raid_bio *rbio) | ||
519 | { | ||
520 | unsigned long flags; | ||
521 | int ret; | ||
522 | |||
523 | spin_lock_irqsave(&rbio->bio_list_lock, flags); | ||
524 | ret = __rbio_is_full(rbio); | ||
525 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | ||
526 | return ret; | ||
527 | } | ||
528 | |||
529 | /* | ||
530 | * returns 1 if it is safe to merge two rbios together. | ||
531 | * The merging is safe if the two rbios correspond to | ||
532 | * the same stripe and if they are both going in the same | ||
533 | * direction (read vs write), and if neither one is | ||
534 | * locked for final IO | ||
535 | * | ||
536 | * The caller is responsible for locking such that | ||
537 | * rmw_locked is safe to test | ||
538 | */ | ||
539 | static int rbio_can_merge(struct btrfs_raid_bio *last, | ||
540 | struct btrfs_raid_bio *cur) | ||
541 | { | ||
542 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | ||
543 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | ||
544 | return 0; | ||
545 | |||
546 | /* | ||
547 | * we can't merge with cached rbios, since the | ||
548 | * idea is that when we merge the destination | ||
549 | * rbio is going to run our IO for us. We can | ||
550 | * steal from cached rbio's though, other functions | ||
551 | * handle that. | ||
552 | */ | ||
553 | if (test_bit(RBIO_CACHE_BIT, &last->flags) || | ||
554 | test_bit(RBIO_CACHE_BIT, &cur->flags)) | ||
555 | return 0; | ||
556 | |||
557 | if (last->raid_map[0] != | ||
558 | cur->raid_map[0]) | ||
559 | return 0; | ||
560 | |||
561 | /* reads can't merge with writes */ | ||
562 | if (last->read_rebuild != | ||
563 | cur->read_rebuild) { | ||
564 | return 0; | ||
565 | } | ||
566 | |||
567 | return 1; | ||
568 | } | ||
569 | |||
570 | /* | ||
571 | * helper to index into the pstripe | ||
572 | */ | ||
573 | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) | ||
574 | { | ||
575 | index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; | ||
576 | return rbio->stripe_pages[index]; | ||
577 | } | ||
578 | |||
579 | /* | ||
580 | * helper to index into the qstripe, returns null | ||
581 | * if there is no qstripe | ||
582 | */ | ||
583 | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) | ||
584 | { | ||
585 | if (rbio->nr_data + 1 == rbio->bbio->num_stripes) | ||
586 | return NULL; | ||
587 | |||
588 | index += ((rbio->nr_data + 1) * rbio->stripe_len) >> | ||
589 | PAGE_CACHE_SHIFT; | ||
590 | return rbio->stripe_pages[index]; | ||
591 | } | ||
592 | |||
593 | /* | ||
594 | * The first stripe in the table for a logical address | ||
595 | * has the lock. rbios are added in one of three ways: | ||
596 | * | ||
597 | * 1) Nobody has the stripe locked yet. The rbio is given | ||
598 | * the lock and 0 is returned. The caller must start the IO | ||
599 | * themselves. | ||
600 | * | ||
601 | * 2) Someone has the stripe locked, but we're able to merge | ||
602 | * with the lock owner. The rbio is freed and the IO will | ||
603 | * start automatically along with the existing rbio. 1 is returned. | ||
604 | * | ||
605 | * 3) Someone has the stripe locked, but we're not able to merge. | ||
606 | * The rbio is added to the lock owner's plug list, or merged into | ||
607 | * an rbio already on the plug list. When the lock owner unlocks, | ||
608 | * the next rbio on the list is run and the IO is started automatically. | ||
609 | * 1 is returned | ||
610 | * | ||
611 | * If we return 0, the caller still owns the rbio and must continue with | ||
612 | * IO submission. If we return 1, the caller must assume the rbio has | ||
613 | * already been freed. | ||
614 | */ | ||
615 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | ||
616 | { | ||
617 | int bucket = rbio_bucket(rbio); | ||
618 | struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; | ||
619 | struct btrfs_raid_bio *cur; | ||
620 | struct btrfs_raid_bio *pending; | ||
621 | unsigned long flags; | ||
622 | DEFINE_WAIT(wait); | ||
623 | struct btrfs_raid_bio *freeit = NULL; | ||
624 | struct btrfs_raid_bio *cache_drop = NULL; | ||
625 | int ret = 0; | ||
626 | int walk = 0; | ||
627 | |||
628 | spin_lock_irqsave(&h->lock, flags); | ||
629 | list_for_each_entry(cur, &h->hash_list, hash_list) { | ||
630 | walk++; | ||
631 | if (cur->raid_map[0] == rbio->raid_map[0]) { | ||
632 | spin_lock(&cur->bio_list_lock); | ||
633 | |||
634 | /* can we steal this cached rbio's pages? */ | ||
635 | if (bio_list_empty(&cur->bio_list) && | ||
636 | list_empty(&cur->plug_list) && | ||
637 | test_bit(RBIO_CACHE_BIT, &cur->flags) && | ||
638 | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | ||
639 | list_del_init(&cur->hash_list); | ||
640 | atomic_dec(&cur->refs); | ||
641 | |||
642 | steal_rbio(cur, rbio); | ||
643 | cache_drop = cur; | ||
644 | spin_unlock(&cur->bio_list_lock); | ||
645 | |||
646 | goto lockit; | ||
647 | } | ||
648 | |||
649 | /* can we merge into the lock owner? */ | ||
650 | if (rbio_can_merge(cur, rbio)) { | ||
651 | merge_rbio(cur, rbio); | ||
652 | spin_unlock(&cur->bio_list_lock); | ||
653 | freeit = rbio; | ||
654 | ret = 1; | ||
655 | goto out; | ||
656 | } | ||
657 | |||
658 | |||
659 | /* | ||
660 | * we couldn't merge with the running | ||
661 | * rbio, see if we can merge with the | ||
662 | * pending ones. We don't have to | ||
663 | * check for rmw_locked because there | ||
664 | * is no way they are inside finish_rmw | ||
665 | * right now | ||
666 | */ | ||
667 | list_for_each_entry(pending, &cur->plug_list, | ||
668 | plug_list) { | ||
669 | if (rbio_can_merge(pending, rbio)) { | ||
670 | merge_rbio(pending, rbio); | ||
671 | spin_unlock(&cur->bio_list_lock); | ||
672 | freeit = rbio; | ||
673 | ret = 1; | ||
674 | goto out; | ||
675 | } | ||
676 | } | ||
677 | |||
678 | /* no merging, put us on the tail of the plug list, | ||
679 | * our rbio will be started with the currently | ||
680 | * running rbio unlocks | ||
681 | */ | ||
682 | list_add_tail(&rbio->plug_list, &cur->plug_list); | ||
683 | spin_unlock(&cur->bio_list_lock); | ||
684 | ret = 1; | ||
685 | goto out; | ||
686 | } | ||
687 | } | ||
688 | lockit: | ||
689 | atomic_inc(&rbio->refs); | ||
690 | list_add(&rbio->hash_list, &h->hash_list); | ||
691 | out: | ||
692 | spin_unlock_irqrestore(&h->lock, flags); | ||
693 | if (cache_drop) | ||
694 | remove_rbio_from_cache(cache_drop); | ||
695 | if (freeit) | ||
696 | __free_raid_bio(freeit); | ||
697 | return ret; | ||
698 | } | ||
699 | |||
700 | /* | ||
701 | * called as rmw or parity rebuild is completed. If the plug list has more | ||
702 | * rbios waiting for this stripe, the next one on the list will be started | ||
703 | */ | ||
704 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | ||
705 | { | ||
706 | int bucket; | ||
707 | struct btrfs_stripe_hash *h; | ||
708 | unsigned long flags; | ||
709 | int keep_cache = 0; | ||
710 | |||
711 | bucket = rbio_bucket(rbio); | ||
712 | h = rbio->fs_info->stripe_hash_table->table + bucket; | ||
713 | |||
714 | if (list_empty(&rbio->plug_list)) | ||
715 | cache_rbio(rbio); | ||
716 | |||
717 | spin_lock_irqsave(&h->lock, flags); | ||
718 | spin_lock(&rbio->bio_list_lock); | ||
719 | |||
720 | if (!list_empty(&rbio->hash_list)) { | ||
721 | /* | ||
722 | * if we're still cached and there is no other IO | ||
723 | * to perform, just leave this rbio here for others | ||
724 | * to steal from later | ||
725 | */ | ||
726 | if (list_empty(&rbio->plug_list) && | ||
727 | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | ||
728 | keep_cache = 1; | ||
729 | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | ||
730 | BUG_ON(!bio_list_empty(&rbio->bio_list)); | ||
731 | goto done; | ||
732 | } | ||
733 | |||
734 | list_del_init(&rbio->hash_list); | ||
735 | atomic_dec(&rbio->refs); | ||
736 | |||
737 | /* | ||
738 | * we use the plug list to hold all the rbios | ||
739 | * waiting for the chance to lock this stripe. | ||
740 | * hand the lock over to one of them. | ||
741 | */ | ||
742 | if (!list_empty(&rbio->plug_list)) { | ||
743 | struct btrfs_raid_bio *next; | ||
744 | struct list_head *head = rbio->plug_list.next; | ||
745 | |||
746 | next = list_entry(head, struct btrfs_raid_bio, | ||
747 | plug_list); | ||
748 | |||
749 | list_del_init(&rbio->plug_list); | ||
750 | |||
751 | list_add(&next->hash_list, &h->hash_list); | ||
752 | atomic_inc(&next->refs); | ||
753 | spin_unlock(&rbio->bio_list_lock); | ||
754 | spin_unlock_irqrestore(&h->lock, flags); | ||
755 | |||
756 | if (next->read_rebuild) | ||
757 | async_read_rebuild(next); | ||
758 | else { | ||
759 | steal_rbio(rbio, next); | ||
760 | async_rmw_stripe(next); | ||
761 | } | ||
762 | |||
763 | goto done_nolock; | ||
764 | } else if (waitqueue_active(&h->wait)) { | ||
765 | spin_unlock(&rbio->bio_list_lock); | ||
766 | spin_unlock_irqrestore(&h->lock, flags); | ||
767 | wake_up(&h->wait); | ||
768 | goto done_nolock; | ||
769 | } | ||
770 | } | ||
771 | done: | ||
772 | spin_unlock(&rbio->bio_list_lock); | ||
773 | spin_unlock_irqrestore(&h->lock, flags); | ||
774 | |||
775 | done_nolock: | ||
776 | if (!keep_cache) | ||
777 | remove_rbio_from_cache(rbio); | ||
778 | } | ||
779 | |||
780 | static void __free_raid_bio(struct btrfs_raid_bio *rbio) | ||
781 | { | ||
782 | int i; | ||
783 | |||
784 | WARN_ON(atomic_read(&rbio->refs) < 0); | ||
785 | if (!atomic_dec_and_test(&rbio->refs)) | ||
786 | return; | ||
787 | |||
788 | WARN_ON(!list_empty(&rbio->stripe_cache)); | ||
789 | WARN_ON(!list_empty(&rbio->hash_list)); | ||
790 | WARN_ON(!bio_list_empty(&rbio->bio_list)); | ||
791 | |||
792 | for (i = 0; i < rbio->nr_pages; i++) { | ||
793 | if (rbio->stripe_pages[i]) { | ||
794 | __free_page(rbio->stripe_pages[i]); | ||
795 | rbio->stripe_pages[i] = NULL; | ||
796 | } | ||
797 | } | ||
798 | kfree(rbio->raid_map); | ||
799 | kfree(rbio->bbio); | ||
800 | kfree(rbio); | ||
801 | } | ||
802 | |||
803 | static void free_raid_bio(struct btrfs_raid_bio *rbio) | ||
804 | { | ||
805 | unlock_stripe(rbio); | ||
806 | __free_raid_bio(rbio); | ||
807 | } | ||
808 | |||
809 | /* | ||
810 | * this frees the rbio and runs through all the bios in the | ||
811 | * bio_list and calls end_io on them | ||
812 | */ | ||
813 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate) | ||
814 | { | ||
815 | struct bio *cur = bio_list_get(&rbio->bio_list); | ||
816 | struct bio *next; | ||
817 | free_raid_bio(rbio); | ||
818 | |||
819 | while (cur) { | ||
820 | next = cur->bi_next; | ||
821 | cur->bi_next = NULL; | ||
822 | if (uptodate) | ||
823 | set_bit(BIO_UPTODATE, &cur->bi_flags); | ||
824 | bio_endio(cur, err); | ||
825 | cur = next; | ||
826 | } | ||
827 | } | ||
828 | |||
829 | /* | ||
830 | * end io function used by finish_rmw. When we finally | ||
831 | * get here, we've written a full stripe | ||
832 | */ | ||
833 | static void raid_write_end_io(struct bio *bio, int err) | ||
834 | { | ||
835 | struct btrfs_raid_bio *rbio = bio->bi_private; | ||
836 | |||
837 | if (err) | ||
838 | fail_bio_stripe(rbio, bio); | ||
839 | |||
840 | bio_put(bio); | ||
841 | |||
842 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) | ||
843 | return; | ||
844 | |||
845 | err = 0; | ||
846 | |||
847 | /* OK, we have read all the stripes we need to. */ | ||
848 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) | ||
849 | err = -EIO; | ||
850 | |||
851 | rbio_orig_end_io(rbio, err, 0); | ||
852 | return; | ||
853 | } | ||
854 | |||
855 | /* | ||
856 | * the read/modify/write code wants to use the original bio for | ||
857 | * any pages it included, and then use the rbio for everything | ||
858 | * else. This function decides if a given index (stripe number) | ||
859 | * and page number in that stripe fall inside the original bio | ||
860 | * or the rbio. | ||
861 | * | ||
862 | * if you set bio_list_only, you'll get a NULL back for any ranges | ||
863 | * that are outside the bio_list | ||
864 | * | ||
865 | * This doesn't take any refs on anything, you get a bare page pointer | ||
866 | * and the caller must bump refs as required. | ||
867 | * | ||
868 | * You must call index_rbio_pages once before you can trust | ||
869 | * the answers from this function. | ||
870 | */ | ||
871 | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, | ||
872 | int index, int pagenr, int bio_list_only) | ||
873 | { | ||
874 | int chunk_page; | ||
875 | struct page *p = NULL; | ||
876 | |||
877 | chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; | ||
878 | |||
879 | spin_lock_irq(&rbio->bio_list_lock); | ||
880 | p = rbio->bio_pages[chunk_page]; | ||
881 | spin_unlock_irq(&rbio->bio_list_lock); | ||
882 | |||
883 | if (p || bio_list_only) | ||
884 | return p; | ||
885 | |||
886 | return rbio->stripe_pages[chunk_page]; | ||
887 | } | ||
888 | |||
889 | /* | ||
890 | * number of pages we need for the entire stripe across all the | ||
891 | * drives | ||
892 | */ | ||
893 | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) | ||
894 | { | ||
895 | unsigned long nr = stripe_len * nr_stripes; | ||
896 | return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | ||
897 | } | ||
898 | |||
899 | /* | ||
900 | * allocation and initial setup for the btrfs_raid_bio. Not | ||
901 | * this does not allocate any pages for rbio->pages. | ||
902 | */ | ||
903 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, | ||
904 | struct btrfs_bio *bbio, u64 *raid_map, | ||
905 | u64 stripe_len) | ||
906 | { | ||
907 | struct btrfs_raid_bio *rbio; | ||
908 | int nr_data = 0; | ||
909 | int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes); | ||
910 | void *p; | ||
911 | |||
912 | rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2, | ||
913 | GFP_NOFS); | ||
914 | if (!rbio) { | ||
915 | kfree(raid_map); | ||
916 | kfree(bbio); | ||
917 | return ERR_PTR(-ENOMEM); | ||
918 | } | ||
919 | |||
920 | bio_list_init(&rbio->bio_list); | ||
921 | INIT_LIST_HEAD(&rbio->plug_list); | ||
922 | spin_lock_init(&rbio->bio_list_lock); | ||
923 | INIT_LIST_HEAD(&rbio->stripe_cache); | ||
924 | INIT_LIST_HEAD(&rbio->hash_list); | ||
925 | rbio->bbio = bbio; | ||
926 | rbio->raid_map = raid_map; | ||
927 | rbio->fs_info = root->fs_info; | ||
928 | rbio->stripe_len = stripe_len; | ||
929 | rbio->nr_pages = num_pages; | ||
930 | rbio->faila = -1; | ||
931 | rbio->failb = -1; | ||
932 | atomic_set(&rbio->refs, 1); | ||
933 | |||
934 | /* | ||
935 | * the stripe_pages and bio_pages array point to the extra | ||
936 | * memory we allocated past the end of the rbio | ||
937 | */ | ||
938 | p = rbio + 1; | ||
939 | rbio->stripe_pages = p; | ||
940 | rbio->bio_pages = p + sizeof(struct page *) * num_pages; | ||
941 | |||
942 | if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE) | ||
943 | nr_data = bbio->num_stripes - 2; | ||
944 | else | ||
945 | nr_data = bbio->num_stripes - 1; | ||
946 | |||
947 | rbio->nr_data = nr_data; | ||
948 | return rbio; | ||
949 | } | ||
950 | |||
951 | /* allocate pages for all the stripes in the bio, including parity */ | ||
952 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | ||
953 | { | ||
954 | int i; | ||
955 | struct page *page; | ||
956 | |||
957 | for (i = 0; i < rbio->nr_pages; i++) { | ||
958 | if (rbio->stripe_pages[i]) | ||
959 | continue; | ||
960 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | ||
961 | if (!page) | ||
962 | return -ENOMEM; | ||
963 | rbio->stripe_pages[i] = page; | ||
964 | ClearPageUptodate(page); | ||
965 | } | ||
966 | return 0; | ||
967 | } | ||
968 | |||
969 | /* allocate pages for just the p/q stripes */ | ||
970 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) | ||
971 | { | ||
972 | int i; | ||
973 | struct page *page; | ||
974 | |||
975 | i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT; | ||
976 | |||
977 | for (; i < rbio->nr_pages; i++) { | ||
978 | if (rbio->stripe_pages[i]) | ||
979 | continue; | ||
980 | page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | ||
981 | if (!page) | ||
982 | return -ENOMEM; | ||
983 | rbio->stripe_pages[i] = page; | ||
984 | } | ||
985 | return 0; | ||
986 | } | ||
987 | |||
988 | /* | ||
989 | * add a single page from a specific stripe into our list of bios for IO | ||
990 | * this will try to merge into existing bios if possible, and returns | ||
991 | * zero if all went well. | ||
992 | */ | ||
993 | int rbio_add_io_page(struct btrfs_raid_bio *rbio, | ||
994 | struct bio_list *bio_list, | ||
995 | struct page *page, | ||
996 | int stripe_nr, | ||
997 | unsigned long page_index, | ||
998 | unsigned long bio_max_len) | ||
999 | { | ||
1000 | struct bio *last = bio_list->tail; | ||
1001 | u64 last_end = 0; | ||
1002 | int ret; | ||
1003 | struct bio *bio; | ||
1004 | struct btrfs_bio_stripe *stripe; | ||
1005 | u64 disk_start; | ||
1006 | |||
1007 | stripe = &rbio->bbio->stripes[stripe_nr]; | ||
1008 | disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT); | ||
1009 | |||
1010 | /* if the device is missing, just fail this stripe */ | ||
1011 | if (!stripe->dev->bdev) | ||
1012 | return fail_rbio_index(rbio, stripe_nr); | ||
1013 | |||
1014 | /* see if we can add this page onto our existing bio */ | ||
1015 | if (last) { | ||
1016 | last_end = (u64)last->bi_sector << 9; | ||
1017 | last_end += last->bi_size; | ||
1018 | |||
1019 | /* | ||
1020 | * we can't merge these if they are from different | ||
1021 | * devices or if they are not contiguous | ||
1022 | */ | ||
1023 | if (last_end == disk_start && stripe->dev->bdev && | ||
1024 | test_bit(BIO_UPTODATE, &last->bi_flags) && | ||
1025 | last->bi_bdev == stripe->dev->bdev) { | ||
1026 | ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0); | ||
1027 | if (ret == PAGE_CACHE_SIZE) | ||
1028 | return 0; | ||
1029 | } | ||
1030 | } | ||
1031 | |||
1032 | /* put a new bio on the list */ | ||
1033 | bio = bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); | ||
1034 | if (!bio) | ||
1035 | return -ENOMEM; | ||
1036 | |||
1037 | bio->bi_size = 0; | ||
1038 | bio->bi_bdev = stripe->dev->bdev; | ||
1039 | bio->bi_sector = disk_start >> 9; | ||
1040 | set_bit(BIO_UPTODATE, &bio->bi_flags); | ||
1041 | |||
1042 | bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); | ||
1043 | bio_list_add(bio_list, bio); | ||
1044 | return 0; | ||
1045 | } | ||
1046 | |||
1047 | /* | ||
1048 | * while we're doing the read/modify/write cycle, we could | ||
1049 | * have errors in reading pages off the disk. This checks | ||
1050 | * for errors and if we're not able to read the page it'll | ||
1051 | * trigger parity reconstruction. The rmw will be finished | ||
1052 | * after we've reconstructed the failed stripes | ||
1053 | */ | ||
1054 | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) | ||
1055 | { | ||
1056 | if (rbio->faila >= 0 || rbio->failb >= 0) { | ||
1057 | BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1); | ||
1058 | __raid56_parity_recover(rbio); | ||
1059 | } else { | ||
1060 | finish_rmw(rbio); | ||
1061 | } | ||
1062 | } | ||
1063 | |||
1064 | /* | ||
1065 | * these are just the pages from the rbio array, not from anything | ||
1066 | * the FS sent down to us | ||
1067 | */ | ||
1068 | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page) | ||
1069 | { | ||
1070 | int index; | ||
1071 | index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT); | ||
1072 | index += page; | ||
1073 | return rbio->stripe_pages[index]; | ||
1074 | } | ||
1075 | |||
1076 | /* | ||
1077 | * helper function to walk our bio list and populate the bio_pages array with | ||
1078 | * the result. This seems expensive, but it is faster than constantly | ||
1079 | * searching through the bio list as we setup the IO in finish_rmw or stripe | ||
1080 | * reconstruction. | ||
1081 | * | ||
1082 | * This must be called before you trust the answers from page_in_rbio | ||
1083 | */ | ||
1084 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | ||
1085 | { | ||
1086 | struct bio *bio; | ||
1087 | u64 start; | ||
1088 | unsigned long stripe_offset; | ||
1089 | unsigned long page_index; | ||
1090 | struct page *p; | ||
1091 | int i; | ||
1092 | |||
1093 | spin_lock_irq(&rbio->bio_list_lock); | ||
1094 | bio_list_for_each(bio, &rbio->bio_list) { | ||
1095 | start = (u64)bio->bi_sector << 9; | ||
1096 | stripe_offset = start - rbio->raid_map[0]; | ||
1097 | page_index = stripe_offset >> PAGE_CACHE_SHIFT; | ||
1098 | |||
1099 | for (i = 0; i < bio->bi_vcnt; i++) { | ||
1100 | p = bio->bi_io_vec[i].bv_page; | ||
1101 | rbio->bio_pages[page_index + i] = p; | ||
1102 | } | ||
1103 | } | ||
1104 | spin_unlock_irq(&rbio->bio_list_lock); | ||
1105 | } | ||
1106 | |||
1107 | /* | ||
1108 | * this is called from one of two situations. We either | ||
1109 | * have a full stripe from the higher layers, or we've read all | ||
1110 | * the missing bits off disk. | ||
1111 | * | ||
1112 | * This will calculate the parity and then send down any | ||
1113 | * changed blocks. | ||
1114 | */ | ||
1115 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) | ||
1116 | { | ||
1117 | struct btrfs_bio *bbio = rbio->bbio; | ||
1118 | void *pointers[bbio->num_stripes]; | ||
1119 | int stripe_len = rbio->stripe_len; | ||
1120 | int nr_data = rbio->nr_data; | ||
1121 | int stripe; | ||
1122 | int pagenr; | ||
1123 | int p_stripe = -1; | ||
1124 | int q_stripe = -1; | ||
1125 | struct bio_list bio_list; | ||
1126 | struct bio *bio; | ||
1127 | int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT; | ||
1128 | int ret; | ||
1129 | |||
1130 | bio_list_init(&bio_list); | ||
1131 | |||
1132 | if (bbio->num_stripes - rbio->nr_data == 1) { | ||
1133 | p_stripe = bbio->num_stripes - 1; | ||
1134 | } else if (bbio->num_stripes - rbio->nr_data == 2) { | ||
1135 | p_stripe = bbio->num_stripes - 2; | ||
1136 | q_stripe = bbio->num_stripes - 1; | ||
1137 | } else { | ||
1138 | BUG(); | ||
1139 | } | ||
1140 | |||
1141 | /* at this point we either have a full stripe, | ||
1142 | * or we've read the full stripe from the drive. | ||
1143 | * recalculate the parity and write the new results. | ||
1144 | * | ||
1145 | * We're not allowed to add any new bios to the | ||
1146 | * bio list here, anyone else that wants to | ||
1147 | * change this stripe needs to do their own rmw. | ||
1148 | */ | ||
1149 | spin_lock_irq(&rbio->bio_list_lock); | ||
1150 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | ||
1151 | spin_unlock_irq(&rbio->bio_list_lock); | ||
1152 | |||
1153 | atomic_set(&rbio->bbio->error, 0); | ||
1154 | |||
1155 | /* | ||
1156 | * now that we've set rmw_locked, run through the | ||
1157 | * bio list one last time and map the page pointers | ||
1158 | * | ||
1159 | * We don't cache full rbios because we're assuming | ||
1160 | * the higher layers are unlikely to use this area of | ||
1161 | * the disk again soon. If they do use it again, | ||
1162 | * hopefully they will send another full bio. | ||
1163 | */ | ||
1164 | index_rbio_pages(rbio); | ||
1165 | if (!rbio_is_full(rbio)) | ||
1166 | cache_rbio_pages(rbio); | ||
1167 | else | ||
1168 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | ||
1169 | |||
1170 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { | ||
1171 | struct page *p; | ||
1172 | /* first collect one page from each data stripe */ | ||
1173 | for (stripe = 0; stripe < nr_data; stripe++) { | ||
1174 | p = page_in_rbio(rbio, stripe, pagenr, 0); | ||
1175 | pointers[stripe] = kmap(p); | ||
1176 | } | ||
1177 | |||
1178 | /* then add the parity stripe */ | ||
1179 | p = rbio_pstripe_page(rbio, pagenr); | ||
1180 | SetPageUptodate(p); | ||
1181 | pointers[stripe++] = kmap(p); | ||
1182 | |||
1183 | if (q_stripe != -1) { | ||
1184 | |||
1185 | /* | ||
1186 | * raid6, add the qstripe and call the | ||
1187 | * library function to fill in our p/q | ||
1188 | */ | ||
1189 | p = rbio_qstripe_page(rbio, pagenr); | ||
1190 | SetPageUptodate(p); | ||
1191 | pointers[stripe++] = kmap(p); | ||
1192 | |||
1193 | raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE, | ||
1194 | pointers); | ||
1195 | } else { | ||
1196 | /* raid5 */ | ||
1197 | memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); | ||
1198 | run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE); | ||
1199 | } | ||
1200 | |||
1201 | |||
1202 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) | ||
1203 | kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); | ||
1204 | } | ||
1205 | |||
1206 | /* | ||
1207 | * time to start writing. Make bios for everything from the | ||
1208 | * higher layers (the bio_list in our rbio) and our p/q. Ignore | ||
1209 | * everything else. | ||
1210 | */ | ||
1211 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) { | ||
1212 | for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) { | ||
1213 | struct page *page; | ||
1214 | if (stripe < rbio->nr_data) { | ||
1215 | page = page_in_rbio(rbio, stripe, pagenr, 1); | ||
1216 | if (!page) | ||
1217 | continue; | ||
1218 | } else { | ||
1219 | page = rbio_stripe_page(rbio, stripe, pagenr); | ||
1220 | } | ||
1221 | |||
1222 | ret = rbio_add_io_page(rbio, &bio_list, | ||
1223 | page, stripe, pagenr, rbio->stripe_len); | ||
1224 | if (ret) | ||
1225 | goto cleanup; | ||
1226 | } | ||
1227 | } | ||
1228 | |||
1229 | atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list)); | ||
1230 | BUG_ON(atomic_read(&bbio->stripes_pending) == 0); | ||
1231 | |||
1232 | while (1) { | ||
1233 | bio = bio_list_pop(&bio_list); | ||
1234 | if (!bio) | ||
1235 | break; | ||
1236 | |||
1237 | bio->bi_private = rbio; | ||
1238 | bio->bi_end_io = raid_write_end_io; | ||
1239 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | ||
1240 | submit_bio(WRITE, bio); | ||
1241 | } | ||
1242 | return; | ||
1243 | |||
1244 | cleanup: | ||
1245 | rbio_orig_end_io(rbio, -EIO, 0); | ||
1246 | } | ||
1247 | |||
1248 | /* | ||
1249 | * helper to find the stripe number for a given bio. Used to figure out which | ||
1250 | * stripe has failed. This expects the bio to correspond to a physical disk, | ||
1251 | * so it looks up based on physical sector numbers. | ||
1252 | */ | ||
1253 | static int find_bio_stripe(struct btrfs_raid_bio *rbio, | ||
1254 | struct bio *bio) | ||
1255 | { | ||
1256 | u64 physical = bio->bi_sector; | ||
1257 | u64 stripe_start; | ||
1258 | int i; | ||
1259 | struct btrfs_bio_stripe *stripe; | ||
1260 | |||
1261 | physical <<= 9; | ||
1262 | |||
1263 | for (i = 0; i < rbio->bbio->num_stripes; i++) { | ||
1264 | stripe = &rbio->bbio->stripes[i]; | ||
1265 | stripe_start = stripe->physical; | ||
1266 | if (physical >= stripe_start && | ||
1267 | physical < stripe_start + rbio->stripe_len) { | ||
1268 | return i; | ||
1269 | } | ||
1270 | } | ||
1271 | return -1; | ||
1272 | } | ||
1273 | |||
1274 | /* | ||
1275 | * helper to find the stripe number for a given | ||
1276 | * bio (before mapping). Used to figure out which stripe has | ||
1277 | * failed. This looks up based on logical block numbers. | ||
1278 | */ | ||
1279 | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, | ||
1280 | struct bio *bio) | ||
1281 | { | ||
1282 | u64 logical = bio->bi_sector; | ||
1283 | u64 stripe_start; | ||
1284 | int i; | ||
1285 | |||
1286 | logical <<= 9; | ||
1287 | |||
1288 | for (i = 0; i < rbio->nr_data; i++) { | ||
1289 | stripe_start = rbio->raid_map[i]; | ||
1290 | if (logical >= stripe_start && | ||
1291 | logical < stripe_start + rbio->stripe_len) { | ||
1292 | return i; | ||
1293 | } | ||
1294 | } | ||
1295 | return -1; | ||
1296 | } | ||
1297 | |||
1298 | /* | ||
1299 | * returns -EIO if we had too many failures | ||
1300 | */ | ||
1301 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) | ||
1302 | { | ||
1303 | unsigned long flags; | ||
1304 | int ret = 0; | ||
1305 | |||
1306 | spin_lock_irqsave(&rbio->bio_list_lock, flags); | ||
1307 | |||
1308 | /* we already know this stripe is bad, move on */ | ||
1309 | if (rbio->faila == failed || rbio->failb == failed) | ||
1310 | goto out; | ||
1311 | |||
1312 | if (rbio->faila == -1) { | ||
1313 | /* first failure on this rbio */ | ||
1314 | rbio->faila = failed; | ||
1315 | atomic_inc(&rbio->bbio->error); | ||
1316 | } else if (rbio->failb == -1) { | ||
1317 | /* second failure on this rbio */ | ||
1318 | rbio->failb = failed; | ||
1319 | atomic_inc(&rbio->bbio->error); | ||
1320 | } else { | ||
1321 | ret = -EIO; | ||
1322 | } | ||
1323 | out: | ||
1324 | spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | ||
1325 | |||
1326 | return ret; | ||
1327 | } | ||
1328 | |||
1329 | /* | ||
1330 | * helper to fail a stripe based on a physical disk | ||
1331 | * bio. | ||
1332 | */ | ||
1333 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, | ||
1334 | struct bio *bio) | ||
1335 | { | ||
1336 | int failed = find_bio_stripe(rbio, bio); | ||
1337 | |||
1338 | if (failed < 0) | ||
1339 | return -EIO; | ||
1340 | |||
1341 | return fail_rbio_index(rbio, failed); | ||
1342 | } | ||
1343 | |||
1344 | /* | ||
1345 | * this sets each page in the bio uptodate. It should only be used on private | ||
1346 | * rbio pages, nothing that comes in from the higher layers | ||
1347 | */ | ||
1348 | static void set_bio_pages_uptodate(struct bio *bio) | ||
1349 | { | ||
1350 | int i; | ||
1351 | struct page *p; | ||
1352 | |||
1353 | for (i = 0; i < bio->bi_vcnt; i++) { | ||
1354 | p = bio->bi_io_vec[i].bv_page; | ||
1355 | SetPageUptodate(p); | ||
1356 | } | ||
1357 | } | ||
1358 | |||
1359 | /* | ||
1360 | * end io for the read phase of the rmw cycle. All the bios here are physical | ||
1361 | * stripe bios we've read from the disk so we can recalculate the parity of the | ||
1362 | * stripe. | ||
1363 | * | ||
1364 | * This will usually kick off finish_rmw once all the bios are read in, but it | ||
1365 | * may trigger parity reconstruction if we had any errors along the way | ||
1366 | */ | ||
1367 | static void raid_rmw_end_io(struct bio *bio, int err) | ||
1368 | { | ||
1369 | struct btrfs_raid_bio *rbio = bio->bi_private; | ||
1370 | |||
1371 | if (err) | ||
1372 | fail_bio_stripe(rbio, bio); | ||
1373 | else | ||
1374 | set_bio_pages_uptodate(bio); | ||
1375 | |||
1376 | bio_put(bio); | ||
1377 | |||
1378 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) | ||
1379 | return; | ||
1380 | |||
1381 | err = 0; | ||
1382 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) | ||
1383 | goto cleanup; | ||
1384 | |||
1385 | /* | ||
1386 | * this will normally call finish_rmw to start our write | ||
1387 | * but if there are any failed stripes we'll reconstruct | ||
1388 | * from parity first | ||
1389 | */ | ||
1390 | validate_rbio_for_rmw(rbio); | ||
1391 | return; | ||
1392 | |||
1393 | cleanup: | ||
1394 | |||
1395 | rbio_orig_end_io(rbio, -EIO, 0); | ||
1396 | } | ||
1397 | |||
1398 | static void async_rmw_stripe(struct btrfs_raid_bio *rbio) | ||
1399 | { | ||
1400 | rbio->work.flags = 0; | ||
1401 | rbio->work.func = rmw_work; | ||
1402 | |||
1403 | btrfs_queue_worker(&rbio->fs_info->rmw_workers, | ||
1404 | &rbio->work); | ||
1405 | } | ||
1406 | |||
1407 | static void async_read_rebuild(struct btrfs_raid_bio *rbio) | ||
1408 | { | ||
1409 | rbio->work.flags = 0; | ||
1410 | rbio->work.func = read_rebuild_work; | ||
1411 | |||
1412 | btrfs_queue_worker(&rbio->fs_info->rmw_workers, | ||
1413 | &rbio->work); | ||
1414 | } | ||
1415 | |||
1416 | /* | ||
1417 | * the stripe must be locked by the caller. It will | ||
1418 | * unlock after all the writes are done | ||
1419 | */ | ||
1420 | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) | ||
1421 | { | ||
1422 | int bios_to_read = 0; | ||
1423 | struct btrfs_bio *bbio = rbio->bbio; | ||
1424 | struct bio_list bio_list; | ||
1425 | int ret; | ||
1426 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | ||
1427 | int pagenr; | ||
1428 | int stripe; | ||
1429 | struct bio *bio; | ||
1430 | |||
1431 | bio_list_init(&bio_list); | ||
1432 | |||
1433 | ret = alloc_rbio_pages(rbio); | ||
1434 | if (ret) | ||
1435 | goto cleanup; | ||
1436 | |||
1437 | index_rbio_pages(rbio); | ||
1438 | |||
1439 | atomic_set(&rbio->bbio->error, 0); | ||
1440 | /* | ||
1441 | * build a list of bios to read all the missing parts of this | ||
1442 | * stripe | ||
1443 | */ | ||
1444 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { | ||
1445 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { | ||
1446 | struct page *page; | ||
1447 | /* | ||
1448 | * we want to find all the pages missing from | ||
1449 | * the rbio and read them from the disk. If | ||
1450 | * page_in_rbio finds a page in the bio list | ||
1451 | * we don't need to read it off the stripe. | ||
1452 | */ | ||
1453 | page = page_in_rbio(rbio, stripe, pagenr, 1); | ||
1454 | if (page) | ||
1455 | continue; | ||
1456 | |||
1457 | page = rbio_stripe_page(rbio, stripe, pagenr); | ||
1458 | /* | ||
1459 | * the bio cache may have handed us an uptodate | ||
1460 | * page. If so, be happy and use it | ||
1461 | */ | ||
1462 | if (PageUptodate(page)) | ||
1463 | continue; | ||
1464 | |||
1465 | ret = rbio_add_io_page(rbio, &bio_list, page, | ||
1466 | stripe, pagenr, rbio->stripe_len); | ||
1467 | if (ret) | ||
1468 | goto cleanup; | ||
1469 | } | ||
1470 | } | ||
1471 | |||
1472 | bios_to_read = bio_list_size(&bio_list); | ||
1473 | if (!bios_to_read) { | ||
1474 | /* | ||
1475 | * this can happen if others have merged with | ||
1476 | * us, it means there is nothing left to read. | ||
1477 | * But if there are missing devices it may not be | ||
1478 | * safe to do the full stripe write yet. | ||
1479 | */ | ||
1480 | goto finish; | ||
1481 | } | ||
1482 | |||
1483 | /* | ||
1484 | * the bbio may be freed once we submit the last bio. Make sure | ||
1485 | * not to touch it after that | ||
1486 | */ | ||
1487 | atomic_set(&bbio->stripes_pending, bios_to_read); | ||
1488 | while (1) { | ||
1489 | bio = bio_list_pop(&bio_list); | ||
1490 | if (!bio) | ||
1491 | break; | ||
1492 | |||
1493 | bio->bi_private = rbio; | ||
1494 | bio->bi_end_io = raid_rmw_end_io; | ||
1495 | |||
1496 | btrfs_bio_wq_end_io(rbio->fs_info, bio, | ||
1497 | BTRFS_WQ_ENDIO_RAID56); | ||
1498 | |||
1499 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | ||
1500 | submit_bio(READ, bio); | ||
1501 | } | ||
1502 | /* the actual write will happen once the reads are done */ | ||
1503 | return 0; | ||
1504 | |||
1505 | cleanup: | ||
1506 | rbio_orig_end_io(rbio, -EIO, 0); | ||
1507 | return -EIO; | ||
1508 | |||
1509 | finish: | ||
1510 | validate_rbio_for_rmw(rbio); | ||
1511 | return 0; | ||
1512 | } | ||
1513 | |||
1514 | /* | ||
1515 | * if the upper layers pass in a full stripe, we thank them by only allocating | ||
1516 | * enough pages to hold the parity, and sending it all down quickly. | ||
1517 | */ | ||
1518 | static int full_stripe_write(struct btrfs_raid_bio *rbio) | ||
1519 | { | ||
1520 | int ret; | ||
1521 | |||
1522 | ret = alloc_rbio_parity_pages(rbio); | ||
1523 | if (ret) | ||
1524 | return ret; | ||
1525 | |||
1526 | ret = lock_stripe_add(rbio); | ||
1527 | if (ret == 0) | ||
1528 | finish_rmw(rbio); | ||
1529 | return 0; | ||
1530 | } | ||
1531 | |||
1532 | /* | ||
1533 | * partial stripe writes get handed over to async helpers. | ||
1534 | * We're really hoping to merge a few more writes into this | ||
1535 | * rbio before calculating new parity | ||
1536 | */ | ||
1537 | static int partial_stripe_write(struct btrfs_raid_bio *rbio) | ||
1538 | { | ||
1539 | int ret; | ||
1540 | |||
1541 | ret = lock_stripe_add(rbio); | ||
1542 | if (ret == 0) | ||
1543 | async_rmw_stripe(rbio); | ||
1544 | return 0; | ||
1545 | } | ||
1546 | |||
1547 | /* | ||
1548 | * sometimes while we were reading from the drive to | ||
1549 | * recalculate parity, enough new bios come into create | ||
1550 | * a full stripe. So we do a check here to see if we can | ||
1551 | * go directly to finish_rmw | ||
1552 | */ | ||
1553 | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) | ||
1554 | { | ||
1555 | /* head off into rmw land if we don't have a full stripe */ | ||
1556 | if (!rbio_is_full(rbio)) | ||
1557 | return partial_stripe_write(rbio); | ||
1558 | return full_stripe_write(rbio); | ||
1559 | } | ||
1560 | |||
1561 | /* | ||
1562 | * We use plugging call backs to collect full stripes. | ||
1563 | * Any time we get a partial stripe write while plugged | ||
1564 | * we collect it into a list. When the unplug comes down, | ||
1565 | * we sort the list by logical block number and merge | ||
1566 | * everything we can into the same rbios | ||
1567 | */ | ||
1568 | struct btrfs_plug_cb { | ||
1569 | struct blk_plug_cb cb; | ||
1570 | struct btrfs_fs_info *info; | ||
1571 | struct list_head rbio_list; | ||
1572 | struct btrfs_work work; | ||
1573 | }; | ||
1574 | |||
1575 | /* | ||
1576 | * rbios on the plug list are sorted for easier merging. | ||
1577 | */ | ||
1578 | static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) | ||
1579 | { | ||
1580 | struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | ||
1581 | plug_list); | ||
1582 | struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | ||
1583 | plug_list); | ||
1584 | u64 a_sector = ra->bio_list.head->bi_sector; | ||
1585 | u64 b_sector = rb->bio_list.head->bi_sector; | ||
1586 | |||
1587 | if (a_sector < b_sector) | ||
1588 | return -1; | ||
1589 | if (a_sector > b_sector) | ||
1590 | return 1; | ||
1591 | return 0; | ||
1592 | } | ||
1593 | |||
1594 | static void run_plug(struct btrfs_plug_cb *plug) | ||
1595 | { | ||
1596 | struct btrfs_raid_bio *cur; | ||
1597 | struct btrfs_raid_bio *last = NULL; | ||
1598 | |||
1599 | /* | ||
1600 | * sort our plug list then try to merge | ||
1601 | * everything we can in hopes of creating full | ||
1602 | * stripes. | ||
1603 | */ | ||
1604 | list_sort(NULL, &plug->rbio_list, plug_cmp); | ||
1605 | while (!list_empty(&plug->rbio_list)) { | ||
1606 | cur = list_entry(plug->rbio_list.next, | ||
1607 | struct btrfs_raid_bio, plug_list); | ||
1608 | list_del_init(&cur->plug_list); | ||
1609 | |||
1610 | if (rbio_is_full(cur)) { | ||
1611 | /* we have a full stripe, send it down */ | ||
1612 | full_stripe_write(cur); | ||
1613 | continue; | ||
1614 | } | ||
1615 | if (last) { | ||
1616 | if (rbio_can_merge(last, cur)) { | ||
1617 | merge_rbio(last, cur); | ||
1618 | __free_raid_bio(cur); | ||
1619 | continue; | ||
1620 | |||
1621 | } | ||
1622 | __raid56_parity_write(last); | ||
1623 | } | ||
1624 | last = cur; | ||
1625 | } | ||
1626 | if (last) { | ||
1627 | __raid56_parity_write(last); | ||
1628 | } | ||
1629 | kfree(plug); | ||
1630 | } | ||
1631 | |||
1632 | /* | ||
1633 | * if the unplug comes from schedule, we have to push the | ||
1634 | * work off to a helper thread | ||
1635 | */ | ||
1636 | static void unplug_work(struct btrfs_work *work) | ||
1637 | { | ||
1638 | struct btrfs_plug_cb *plug; | ||
1639 | plug = container_of(work, struct btrfs_plug_cb, work); | ||
1640 | run_plug(plug); | ||
1641 | } | ||
1642 | |||
1643 | static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | ||
1644 | { | ||
1645 | struct btrfs_plug_cb *plug; | ||
1646 | plug = container_of(cb, struct btrfs_plug_cb, cb); | ||
1647 | |||
1648 | if (from_schedule) { | ||
1649 | plug->work.flags = 0; | ||
1650 | plug->work.func = unplug_work; | ||
1651 | btrfs_queue_worker(&plug->info->rmw_workers, | ||
1652 | &plug->work); | ||
1653 | return; | ||
1654 | } | ||
1655 | run_plug(plug); | ||
1656 | } | ||
1657 | |||
1658 | /* | ||
1659 | * our main entry point for writes from the rest of the FS. | ||
1660 | */ | ||
1661 | int raid56_parity_write(struct btrfs_root *root, struct bio *bio, | ||
1662 | struct btrfs_bio *bbio, u64 *raid_map, | ||
1663 | u64 stripe_len) | ||
1664 | { | ||
1665 | struct btrfs_raid_bio *rbio; | ||
1666 | struct btrfs_plug_cb *plug = NULL; | ||
1667 | struct blk_plug_cb *cb; | ||
1668 | |||
1669 | rbio = alloc_rbio(root, bbio, raid_map, stripe_len); | ||
1670 | if (IS_ERR(rbio)) { | ||
1671 | kfree(raid_map); | ||
1672 | kfree(bbio); | ||
1673 | return PTR_ERR(rbio); | ||
1674 | } | ||
1675 | bio_list_add(&rbio->bio_list, bio); | ||
1676 | rbio->bio_list_bytes = bio->bi_size; | ||
1677 | |||
1678 | /* | ||
1679 | * don't plug on full rbios, just get them out the door | ||
1680 | * as quickly as we can | ||
1681 | */ | ||
1682 | if (rbio_is_full(rbio)) | ||
1683 | return full_stripe_write(rbio); | ||
1684 | |||
1685 | cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, | ||
1686 | sizeof(*plug)); | ||
1687 | if (cb) { | ||
1688 | plug = container_of(cb, struct btrfs_plug_cb, cb); | ||
1689 | if (!plug->info) { | ||
1690 | plug->info = root->fs_info; | ||
1691 | INIT_LIST_HEAD(&plug->rbio_list); | ||
1692 | } | ||
1693 | list_add_tail(&rbio->plug_list, &plug->rbio_list); | ||
1694 | } else { | ||
1695 | return __raid56_parity_write(rbio); | ||
1696 | } | ||
1697 | return 0; | ||
1698 | } | ||
1699 | |||
1700 | /* | ||
1701 | * all parity reconstruction happens here. We've read in everything | ||
1702 | * we can find from the drives and this does the heavy lifting of | ||
1703 | * sorting the good from the bad. | ||
1704 | */ | ||
1705 | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) | ||
1706 | { | ||
1707 | int pagenr, stripe; | ||
1708 | void **pointers; | ||
1709 | int faila = -1, failb = -1; | ||
1710 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | ||
1711 | struct page *page; | ||
1712 | int err; | ||
1713 | int i; | ||
1714 | |||
1715 | pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *), | ||
1716 | GFP_NOFS); | ||
1717 | if (!pointers) { | ||
1718 | err = -ENOMEM; | ||
1719 | goto cleanup_io; | ||
1720 | } | ||
1721 | |||
1722 | faila = rbio->faila; | ||
1723 | failb = rbio->failb; | ||
1724 | |||
1725 | if (rbio->read_rebuild) { | ||
1726 | spin_lock_irq(&rbio->bio_list_lock); | ||
1727 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | ||
1728 | spin_unlock_irq(&rbio->bio_list_lock); | ||
1729 | } | ||
1730 | |||
1731 | index_rbio_pages(rbio); | ||
1732 | |||
1733 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { | ||
1734 | /* setup our array of pointers with pages | ||
1735 | * from each stripe | ||
1736 | */ | ||
1737 | for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { | ||
1738 | /* | ||
1739 | * if we're rebuilding a read, we have to use | ||
1740 | * pages from the bio list | ||
1741 | */ | ||
1742 | if (rbio->read_rebuild && | ||
1743 | (stripe == faila || stripe == failb)) { | ||
1744 | page = page_in_rbio(rbio, stripe, pagenr, 0); | ||
1745 | } else { | ||
1746 | page = rbio_stripe_page(rbio, stripe, pagenr); | ||
1747 | } | ||
1748 | pointers[stripe] = kmap(page); | ||
1749 | } | ||
1750 | |||
1751 | /* all raid6 handling here */ | ||
1752 | if (rbio->raid_map[rbio->bbio->num_stripes - 1] == | ||
1753 | RAID6_Q_STRIPE) { | ||
1754 | |||
1755 | /* | ||
1756 | * single failure, rebuild from parity raid5 | ||
1757 | * style | ||
1758 | */ | ||
1759 | if (failb < 0) { | ||
1760 | if (faila == rbio->nr_data) { | ||
1761 | /* | ||
1762 | * Just the P stripe has failed, without | ||
1763 | * a bad data or Q stripe. | ||
1764 | * TODO, we should redo the xor here. | ||
1765 | */ | ||
1766 | err = -EIO; | ||
1767 | goto cleanup; | ||
1768 | } | ||
1769 | /* | ||
1770 | * a single failure in raid6 is rebuilt | ||
1771 | * in the pstripe code below | ||
1772 | */ | ||
1773 | goto pstripe; | ||
1774 | } | ||
1775 | |||
1776 | /* make sure our ps and qs are in order */ | ||
1777 | if (faila > failb) { | ||
1778 | int tmp = failb; | ||
1779 | failb = faila; | ||
1780 | faila = tmp; | ||
1781 | } | ||
1782 | |||
1783 | /* if the q stripe is failed, do a pstripe reconstruction | ||
1784 | * from the xors. | ||
1785 | * If both the q stripe and the P stripe are failed, we're | ||
1786 | * here due to a crc mismatch and we can't give them the | ||
1787 | * data they want | ||
1788 | */ | ||
1789 | if (rbio->raid_map[failb] == RAID6_Q_STRIPE) { | ||
1790 | if (rbio->raid_map[faila] == RAID5_P_STRIPE) { | ||
1791 | err = -EIO; | ||
1792 | goto cleanup; | ||
1793 | } | ||
1794 | /* | ||
1795 | * otherwise we have one bad data stripe and | ||
1796 | * a good P stripe. raid5! | ||
1797 | */ | ||
1798 | goto pstripe; | ||
1799 | } | ||
1800 | |||
1801 | if (rbio->raid_map[failb] == RAID5_P_STRIPE) { | ||
1802 | raid6_datap_recov(rbio->bbio->num_stripes, | ||
1803 | PAGE_SIZE, faila, pointers); | ||
1804 | } else { | ||
1805 | raid6_2data_recov(rbio->bbio->num_stripes, | ||
1806 | PAGE_SIZE, faila, failb, | ||
1807 | pointers); | ||
1808 | } | ||
1809 | } else { | ||
1810 | void *p; | ||
1811 | |||
1812 | /* rebuild from P stripe here (raid5 or raid6) */ | ||
1813 | BUG_ON(failb != -1); | ||
1814 | pstripe: | ||
1815 | /* Copy parity block into failed block to start with */ | ||
1816 | memcpy(pointers[faila], | ||
1817 | pointers[rbio->nr_data], | ||
1818 | PAGE_CACHE_SIZE); | ||
1819 | |||
1820 | /* rearrange the pointer array */ | ||
1821 | p = pointers[faila]; | ||
1822 | for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) | ||
1823 | pointers[stripe] = pointers[stripe + 1]; | ||
1824 | pointers[rbio->nr_data - 1] = p; | ||
1825 | |||
1826 | /* xor in the rest */ | ||
1827 | run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE); | ||
1828 | } | ||
1829 | /* if we're doing this rebuild as part of an rmw, go through | ||
1830 | * and set all of our private rbio pages in the | ||
1831 | * failed stripes as uptodate. This way finish_rmw will | ||
1832 | * know they can be trusted. If this was a read reconstruction, | ||
1833 | * other endio functions will fiddle the uptodate bits | ||
1834 | */ | ||
1835 | if (!rbio->read_rebuild) { | ||
1836 | for (i = 0; i < nr_pages; i++) { | ||
1837 | if (faila != -1) { | ||
1838 | page = rbio_stripe_page(rbio, faila, i); | ||
1839 | SetPageUptodate(page); | ||
1840 | } | ||
1841 | if (failb != -1) { | ||
1842 | page = rbio_stripe_page(rbio, failb, i); | ||
1843 | SetPageUptodate(page); | ||
1844 | } | ||
1845 | } | ||
1846 | } | ||
1847 | for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) { | ||
1848 | /* | ||
1849 | * if we're rebuilding a read, we have to use | ||
1850 | * pages from the bio list | ||
1851 | */ | ||
1852 | if (rbio->read_rebuild && | ||
1853 | (stripe == faila || stripe == failb)) { | ||
1854 | page = page_in_rbio(rbio, stripe, pagenr, 0); | ||
1855 | } else { | ||
1856 | page = rbio_stripe_page(rbio, stripe, pagenr); | ||
1857 | } | ||
1858 | kunmap(page); | ||
1859 | } | ||
1860 | } | ||
1861 | |||
1862 | err = 0; | ||
1863 | cleanup: | ||
1864 | kfree(pointers); | ||
1865 | |||
1866 | cleanup_io: | ||
1867 | |||
1868 | if (rbio->read_rebuild) { | ||
1869 | if (err == 0) | ||
1870 | cache_rbio_pages(rbio); | ||
1871 | else | ||
1872 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | ||
1873 | |||
1874 | rbio_orig_end_io(rbio, err, err == 0); | ||
1875 | } else if (err == 0) { | ||
1876 | rbio->faila = -1; | ||
1877 | rbio->failb = -1; | ||
1878 | finish_rmw(rbio); | ||
1879 | } else { | ||
1880 | rbio_orig_end_io(rbio, err, 0); | ||
1881 | } | ||
1882 | } | ||
1883 | |||
1884 | /* | ||
1885 | * This is called only for stripes we've read from disk to | ||
1886 | * reconstruct the parity. | ||
1887 | */ | ||
1888 | static void raid_recover_end_io(struct bio *bio, int err) | ||
1889 | { | ||
1890 | struct btrfs_raid_bio *rbio = bio->bi_private; | ||
1891 | |||
1892 | /* | ||
1893 | * we only read stripe pages off the disk, set them | ||
1894 | * up to date if there were no errors | ||
1895 | */ | ||
1896 | if (err) | ||
1897 | fail_bio_stripe(rbio, bio); | ||
1898 | else | ||
1899 | set_bio_pages_uptodate(bio); | ||
1900 | bio_put(bio); | ||
1901 | |||
1902 | if (!atomic_dec_and_test(&rbio->bbio->stripes_pending)) | ||
1903 | return; | ||
1904 | |||
1905 | if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors) | ||
1906 | rbio_orig_end_io(rbio, -EIO, 0); | ||
1907 | else | ||
1908 | __raid_recover_end_io(rbio); | ||
1909 | } | ||
1910 | |||
1911 | /* | ||
1912 | * reads everything we need off the disk to reconstruct | ||
1913 | * the parity. endio handlers trigger final reconstruction | ||
1914 | * when the IO is done. | ||
1915 | * | ||
1916 | * This is used both for reads from the higher layers and for | ||
1917 | * parity construction required to finish a rmw cycle. | ||
1918 | */ | ||
1919 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) | ||
1920 | { | ||
1921 | int bios_to_read = 0; | ||
1922 | struct btrfs_bio *bbio = rbio->bbio; | ||
1923 | struct bio_list bio_list; | ||
1924 | int ret; | ||
1925 | int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | ||
1926 | int pagenr; | ||
1927 | int stripe; | ||
1928 | struct bio *bio; | ||
1929 | |||
1930 | bio_list_init(&bio_list); | ||
1931 | |||
1932 | ret = alloc_rbio_pages(rbio); | ||
1933 | if (ret) | ||
1934 | goto cleanup; | ||
1935 | |||
1936 | atomic_set(&rbio->bbio->error, 0); | ||
1937 | |||
1938 | /* | ||
1939 | * read everything that hasn't failed. Thanks to the | ||
1940 | * stripe cache, it is possible that some or all of these | ||
1941 | * pages are going to be uptodate. | ||
1942 | */ | ||
1943 | for (stripe = 0; stripe < bbio->num_stripes; stripe++) { | ||
1944 | if (rbio->faila == stripe || | ||
1945 | rbio->failb == stripe) | ||
1946 | continue; | ||
1947 | |||
1948 | for (pagenr = 0; pagenr < nr_pages; pagenr++) { | ||
1949 | struct page *p; | ||
1950 | |||
1951 | /* | ||
1952 | * the rmw code may have already read this | ||
1953 | * page in | ||
1954 | */ | ||
1955 | p = rbio_stripe_page(rbio, stripe, pagenr); | ||
1956 | if (PageUptodate(p)) | ||
1957 | continue; | ||
1958 | |||
1959 | ret = rbio_add_io_page(rbio, &bio_list, | ||
1960 | rbio_stripe_page(rbio, stripe, pagenr), | ||
1961 | stripe, pagenr, rbio->stripe_len); | ||
1962 | if (ret < 0) | ||
1963 | goto cleanup; | ||
1964 | } | ||
1965 | } | ||
1966 | |||
1967 | bios_to_read = bio_list_size(&bio_list); | ||
1968 | if (!bios_to_read) { | ||
1969 | /* | ||
1970 | * we might have no bios to read just because the pages | ||
1971 | * were up to date, or we might have no bios to read because | ||
1972 | * the devices were gone. | ||
1973 | */ | ||
1974 | if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) { | ||
1975 | __raid_recover_end_io(rbio); | ||
1976 | goto out; | ||
1977 | } else { | ||
1978 | goto cleanup; | ||
1979 | } | ||
1980 | } | ||
1981 | |||
1982 | /* | ||
1983 | * the bbio may be freed once we submit the last bio. Make sure | ||
1984 | * not to touch it after that | ||
1985 | */ | ||
1986 | atomic_set(&bbio->stripes_pending, bios_to_read); | ||
1987 | while (1) { | ||
1988 | bio = bio_list_pop(&bio_list); | ||
1989 | if (!bio) | ||
1990 | break; | ||
1991 | |||
1992 | bio->bi_private = rbio; | ||
1993 | bio->bi_end_io = raid_recover_end_io; | ||
1994 | |||
1995 | btrfs_bio_wq_end_io(rbio->fs_info, bio, | ||
1996 | BTRFS_WQ_ENDIO_RAID56); | ||
1997 | |||
1998 | BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags)); | ||
1999 | submit_bio(READ, bio); | ||
2000 | } | ||
2001 | out: | ||
2002 | return 0; | ||
2003 | |||
2004 | cleanup: | ||
2005 | if (rbio->read_rebuild) | ||
2006 | rbio_orig_end_io(rbio, -EIO, 0); | ||
2007 | return -EIO; | ||
2008 | } | ||
2009 | |||
2010 | /* | ||
2011 | * the main entry point for reads from the higher layers. This | ||
2012 | * is really only called when the normal read path had a failure, | ||
2013 | * so we assume the bio they send down corresponds to a failed part | ||
2014 | * of the drive. | ||
2015 | */ | ||
2016 | int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, | ||
2017 | struct btrfs_bio *bbio, u64 *raid_map, | ||
2018 | u64 stripe_len, int mirror_num) | ||
2019 | { | ||
2020 | struct btrfs_raid_bio *rbio; | ||
2021 | int ret; | ||
2022 | |||
2023 | rbio = alloc_rbio(root, bbio, raid_map, stripe_len); | ||
2024 | if (IS_ERR(rbio)) { | ||
2025 | return PTR_ERR(rbio); | ||
2026 | } | ||
2027 | |||
2028 | rbio->read_rebuild = 1; | ||
2029 | bio_list_add(&rbio->bio_list, bio); | ||
2030 | rbio->bio_list_bytes = bio->bi_size; | ||
2031 | |||
2032 | rbio->faila = find_logical_bio_stripe(rbio, bio); | ||
2033 | if (rbio->faila == -1) { | ||
2034 | BUG(); | ||
2035 | kfree(rbio); | ||
2036 | return -EIO; | ||
2037 | } | ||
2038 | |||
2039 | /* | ||
2040 | * reconstruct from the q stripe if they are | ||
2041 | * asking for mirror 3 | ||
2042 | */ | ||
2043 | if (mirror_num == 3) | ||
2044 | rbio->failb = bbio->num_stripes - 2; | ||
2045 | |||
2046 | ret = lock_stripe_add(rbio); | ||
2047 | |||
2048 | /* | ||
2049 | * __raid56_parity_recover will end the bio with | ||
2050 | * any errors it hits. We don't want to return | ||
2051 | * its error value up the stack because our caller | ||
2052 | * will end up calling bio_endio with any nonzero | ||
2053 | * return | ||
2054 | */ | ||
2055 | if (ret == 0) | ||
2056 | __raid56_parity_recover(rbio); | ||
2057 | /* | ||
2058 | * our rbio has been added to the list of | ||
2059 | * rbios that will be handled after the | ||
2060 | * currently lock owner is done | ||
2061 | */ | ||
2062 | return 0; | ||
2063 | |||
2064 | } | ||
2065 | |||
2066 | static void rmw_work(struct btrfs_work *work) | ||
2067 | { | ||
2068 | struct btrfs_raid_bio *rbio; | ||
2069 | |||
2070 | rbio = container_of(work, struct btrfs_raid_bio, work); | ||
2071 | raid56_rmw_stripe(rbio); | ||
2072 | } | ||
2073 | |||
2074 | static void read_rebuild_work(struct btrfs_work *work) | ||
2075 | { | ||
2076 | struct btrfs_raid_bio *rbio; | ||
2077 | |||
2078 | rbio = container_of(work, struct btrfs_raid_bio, work); | ||
2079 | __raid56_parity_recover(rbio); | ||
2080 | } | ||