summaryrefslogtreecommitdiffstats
path: root/drivers/misc/panel.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/misc/panel.c')
-rw-r--r--drivers/misc/panel.c2445
1 files changed, 2445 insertions, 0 deletions
diff --git a/drivers/misc/panel.c b/drivers/misc/panel.c
new file mode 100644
index 000000000000..4262db0237f9
--- /dev/null
+++ b/drivers/misc/panel.c
@@ -0,0 +1,2445 @@
1/*
2 * Front panel driver for Linux
3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11 * connected to a parallel printer port.
12 *
13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14 * serial module compatible with Samsung's KS0074. The pins may be connected in
15 * any combination, everything is programmable.
16 *
17 * The keypad consists in a matrix of push buttons connecting input pins to
18 * data output pins or to the ground. The combinations have to be hard-coded
19 * in the driver, though several profiles exist and adding new ones is easy.
20 *
21 * Several profiles are provided for commonly found LCD+keypad modules on the
22 * market, such as those found in Nexcom's appliances.
23 *
24 * FIXME:
25 * - the initialization/deinitialization process is very dirty and should
26 * be rewritten. It may even be buggy.
27 *
28 * TODO:
29 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30 * - make the LCD a part of a virtual screen of Vx*Vy
31 * - make the inputs list smp-safe
32 * - change the keyboard to a double mapping : signals -> key_id -> values
33 * so that applications can change values without knowing signals
34 *
35 */
36
37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38
39#include <linux/module.h>
40
41#include <linux/types.h>
42#include <linux/errno.h>
43#include <linux/signal.h>
44#include <linux/sched.h>
45#include <linux/spinlock.h>
46#include <linux/interrupt.h>
47#include <linux/miscdevice.h>
48#include <linux/slab.h>
49#include <linux/ioport.h>
50#include <linux/fcntl.h>
51#include <linux/init.h>
52#include <linux/delay.h>
53#include <linux/kernel.h>
54#include <linux/ctype.h>
55#include <linux/parport.h>
56#include <linux/list.h>
57#include <linux/notifier.h>
58#include <linux/reboot.h>
59#include <generated/utsrelease.h>
60
61#include <linux/io.h>
62#include <linux/uaccess.h>
63
64#define LCD_MINOR 156
65#define KEYPAD_MINOR 185
66
67#define PANEL_VERSION "0.9.5"
68
69#define LCD_MAXBYTES 256 /* max burst write */
70
71#define KEYPAD_BUFFER 64
72
73/* poll the keyboard this every second */
74#define INPUT_POLL_TIME (HZ / 50)
75/* a key starts to repeat after this times INPUT_POLL_TIME */
76#define KEYPAD_REP_START (10)
77/* a key repeats this times INPUT_POLL_TIME */
78#define KEYPAD_REP_DELAY (2)
79
80/* keep the light on this times INPUT_POLL_TIME for each flash */
81#define FLASH_LIGHT_TEMPO (200)
82
83/* converts an r_str() input to an active high, bits string : 000BAOSE */
84#define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85
86#define PNL_PBUSY 0x80 /* inverted input, active low */
87#define PNL_PACK 0x40 /* direct input, active low */
88#define PNL_POUTPA 0x20 /* direct input, active high */
89#define PNL_PSELECD 0x10 /* direct input, active high */
90#define PNL_PERRORP 0x08 /* direct input, active low */
91
92#define PNL_PBIDIR 0x20 /* bi-directional ports */
93/* high to read data in or-ed with data out */
94#define PNL_PINTEN 0x10
95#define PNL_PSELECP 0x08 /* inverted output, active low */
96#define PNL_PINITP 0x04 /* direct output, active low */
97#define PNL_PAUTOLF 0x02 /* inverted output, active low */
98#define PNL_PSTROBE 0x01 /* inverted output */
99
100#define PNL_PD0 0x01
101#define PNL_PD1 0x02
102#define PNL_PD2 0x04
103#define PNL_PD3 0x08
104#define PNL_PD4 0x10
105#define PNL_PD5 0x20
106#define PNL_PD6 0x40
107#define PNL_PD7 0x80
108
109#define PIN_NONE 0
110#define PIN_STROBE 1
111#define PIN_D0 2
112#define PIN_D1 3
113#define PIN_D2 4
114#define PIN_D3 5
115#define PIN_D4 6
116#define PIN_D5 7
117#define PIN_D6 8
118#define PIN_D7 9
119#define PIN_AUTOLF 14
120#define PIN_INITP 16
121#define PIN_SELECP 17
122#define PIN_NOT_SET 127
123
124#define LCD_FLAG_S 0x0001
125#define LCD_FLAG_ID 0x0002
126#define LCD_FLAG_B 0x0004 /* blink on */
127#define LCD_FLAG_C 0x0008 /* cursor on */
128#define LCD_FLAG_D 0x0010 /* display on */
129#define LCD_FLAG_F 0x0020 /* large font mode */
130#define LCD_FLAG_N 0x0040 /* 2-rows mode */
131#define LCD_FLAG_L 0x0080 /* backlight enabled */
132
133/* LCD commands */
134#define LCD_CMD_DISPLAY_CLEAR 0x01 /* Clear entire display */
135
136#define LCD_CMD_ENTRY_MODE 0x04 /* Set entry mode */
137#define LCD_CMD_CURSOR_INC 0x02 /* Increment cursor */
138
139#define LCD_CMD_DISPLAY_CTRL 0x08 /* Display control */
140#define LCD_CMD_DISPLAY_ON 0x04 /* Set display on */
141#define LCD_CMD_CURSOR_ON 0x02 /* Set cursor on */
142#define LCD_CMD_BLINK_ON 0x01 /* Set blink on */
143
144#define LCD_CMD_SHIFT 0x10 /* Shift cursor/display */
145#define LCD_CMD_DISPLAY_SHIFT 0x08 /* Shift display instead of cursor */
146#define LCD_CMD_SHIFT_RIGHT 0x04 /* Shift display/cursor to the right */
147
148#define LCD_CMD_FUNCTION_SET 0x20 /* Set function */
149#define LCD_CMD_DATA_LEN_8BITS 0x10 /* Set data length to 8 bits */
150#define LCD_CMD_TWO_LINES 0x08 /* Set to two display lines */
151#define LCD_CMD_FONT_5X10_DOTS 0x04 /* Set char font to 5x10 dots */
152
153#define LCD_CMD_SET_CGRAM_ADDR 0x40 /* Set char generator RAM address */
154
155#define LCD_CMD_SET_DDRAM_ADDR 0x80 /* Set display data RAM address */
156
157#define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
158#define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
159
160#define NOT_SET -1
161
162/* macros to simplify use of the parallel port */
163#define r_ctr(x) (parport_read_control((x)->port))
164#define r_dtr(x) (parport_read_data((x)->port))
165#define r_str(x) (parport_read_status((x)->port))
166#define w_ctr(x, y) (parport_write_control((x)->port, (y)))
167#define w_dtr(x, y) (parport_write_data((x)->port, (y)))
168
169/* this defines which bits are to be used and which ones to be ignored */
170/* logical or of the output bits involved in the scan matrix */
171static __u8 scan_mask_o;
172/* logical or of the input bits involved in the scan matrix */
173static __u8 scan_mask_i;
174
175enum input_type {
176 INPUT_TYPE_STD,
177 INPUT_TYPE_KBD,
178};
179
180enum input_state {
181 INPUT_ST_LOW,
182 INPUT_ST_RISING,
183 INPUT_ST_HIGH,
184 INPUT_ST_FALLING,
185};
186
187struct logical_input {
188 struct list_head list;
189 __u64 mask;
190 __u64 value;
191 enum input_type type;
192 enum input_state state;
193 __u8 rise_time, fall_time;
194 __u8 rise_timer, fall_timer, high_timer;
195
196 union {
197 struct { /* valid when type == INPUT_TYPE_STD */
198 void (*press_fct)(int);
199 void (*release_fct)(int);
200 int press_data;
201 int release_data;
202 } std;
203 struct { /* valid when type == INPUT_TYPE_KBD */
204 /* strings can be non null-terminated */
205 char press_str[sizeof(void *) + sizeof(int)];
206 char repeat_str[sizeof(void *) + sizeof(int)];
207 char release_str[sizeof(void *) + sizeof(int)];
208 } kbd;
209 } u;
210};
211
212static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
213
214/* physical contacts history
215 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
216 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
217 * corresponds to the ground.
218 * Within each group, bits are stored in the same order as read on the port :
219 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
220 * So, each __u64 is represented like this :
221 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
222 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
223 */
224
225/* what has just been read from the I/O ports */
226static __u64 phys_read;
227/* previous phys_read */
228static __u64 phys_read_prev;
229/* stabilized phys_read (phys_read|phys_read_prev) */
230static __u64 phys_curr;
231/* previous phys_curr */
232static __u64 phys_prev;
233/* 0 means that at least one logical signal needs be computed */
234static char inputs_stable;
235
236/* these variables are specific to the keypad */
237static struct {
238 bool enabled;
239} keypad;
240
241static char keypad_buffer[KEYPAD_BUFFER];
242static int keypad_buflen;
243static int keypad_start;
244static char keypressed;
245static wait_queue_head_t keypad_read_wait;
246
247/* lcd-specific variables */
248static struct {
249 bool enabled;
250 bool initialized;
251 bool must_clear;
252
253 int height;
254 int width;
255 int bwidth;
256 int hwidth;
257 int charset;
258 int proto;
259 int light_tempo;
260
261 /* TODO: use union here? */
262 struct {
263 int e;
264 int rs;
265 int rw;
266 int cl;
267 int da;
268 int bl;
269 } pins;
270
271 /* contains the LCD config state */
272 unsigned long int flags;
273
274 /* Contains the LCD X and Y offset */
275 struct {
276 unsigned long int x;
277 unsigned long int y;
278 } addr;
279
280 /* Current escape sequence and it's length or -1 if outside */
281 struct {
282 char buf[LCD_ESCAPE_LEN + 1];
283 int len;
284 } esc_seq;
285} lcd;
286
287/* Needed only for init */
288static int selected_lcd_type = NOT_SET;
289
290/*
291 * Bit masks to convert LCD signals to parallel port outputs.
292 * _d_ are values for data port, _c_ are for control port.
293 * [0] = signal OFF, [1] = signal ON, [2] = mask
294 */
295#define BIT_CLR 0
296#define BIT_SET 1
297#define BIT_MSK 2
298#define BIT_STATES 3
299/*
300 * one entry for each bit on the LCD
301 */
302#define LCD_BIT_E 0
303#define LCD_BIT_RS 1
304#define LCD_BIT_RW 2
305#define LCD_BIT_BL 3
306#define LCD_BIT_CL 4
307#define LCD_BIT_DA 5
308#define LCD_BITS 6
309
310/*
311 * each bit can be either connected to a DATA or CTRL port
312 */
313#define LCD_PORT_C 0
314#define LCD_PORT_D 1
315#define LCD_PORTS 2
316
317static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
318
319/*
320 * LCD protocols
321 */
322#define LCD_PROTO_PARALLEL 0
323#define LCD_PROTO_SERIAL 1
324#define LCD_PROTO_TI_DA8XX_LCD 2
325
326/*
327 * LCD character sets
328 */
329#define LCD_CHARSET_NORMAL 0
330#define LCD_CHARSET_KS0074 1
331
332/*
333 * LCD types
334 */
335#define LCD_TYPE_NONE 0
336#define LCD_TYPE_CUSTOM 1
337#define LCD_TYPE_OLD 2
338#define LCD_TYPE_KS0074 3
339#define LCD_TYPE_HANTRONIX 4
340#define LCD_TYPE_NEXCOM 5
341
342/*
343 * keypad types
344 */
345#define KEYPAD_TYPE_NONE 0
346#define KEYPAD_TYPE_OLD 1
347#define KEYPAD_TYPE_NEW 2
348#define KEYPAD_TYPE_NEXCOM 3
349
350/*
351 * panel profiles
352 */
353#define PANEL_PROFILE_CUSTOM 0
354#define PANEL_PROFILE_OLD 1
355#define PANEL_PROFILE_NEW 2
356#define PANEL_PROFILE_HANTRONIX 3
357#define PANEL_PROFILE_NEXCOM 4
358#define PANEL_PROFILE_LARGE 5
359
360/*
361 * Construct custom config from the kernel's configuration
362 */
363#define DEFAULT_PARPORT 0
364#define DEFAULT_PROFILE PANEL_PROFILE_LARGE
365#define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD
366#define DEFAULT_LCD_TYPE LCD_TYPE_OLD
367#define DEFAULT_LCD_HEIGHT 2
368#define DEFAULT_LCD_WIDTH 40
369#define DEFAULT_LCD_BWIDTH 40
370#define DEFAULT_LCD_HWIDTH 64
371#define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
372#define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
373
374#define DEFAULT_LCD_PIN_E PIN_AUTOLF
375#define DEFAULT_LCD_PIN_RS PIN_SELECP
376#define DEFAULT_LCD_PIN_RW PIN_INITP
377#define DEFAULT_LCD_PIN_SCL PIN_STROBE
378#define DEFAULT_LCD_PIN_SDA PIN_D0
379#define DEFAULT_LCD_PIN_BL PIN_NOT_SET
380
381#ifdef CONFIG_PANEL_PARPORT
382#undef DEFAULT_PARPORT
383#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
384#endif
385
386#ifdef CONFIG_PANEL_PROFILE
387#undef DEFAULT_PROFILE
388#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
389#endif
390
391#if DEFAULT_PROFILE == 0 /* custom */
392#ifdef CONFIG_PANEL_KEYPAD
393#undef DEFAULT_KEYPAD_TYPE
394#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
395#endif
396
397#ifdef CONFIG_PANEL_LCD
398#undef DEFAULT_LCD_TYPE
399#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
400#endif
401
402#ifdef CONFIG_PANEL_LCD_HEIGHT
403#undef DEFAULT_LCD_HEIGHT
404#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
405#endif
406
407#ifdef CONFIG_PANEL_LCD_WIDTH
408#undef DEFAULT_LCD_WIDTH
409#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
410#endif
411
412#ifdef CONFIG_PANEL_LCD_BWIDTH
413#undef DEFAULT_LCD_BWIDTH
414#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
415#endif
416
417#ifdef CONFIG_PANEL_LCD_HWIDTH
418#undef DEFAULT_LCD_HWIDTH
419#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
420#endif
421
422#ifdef CONFIG_PANEL_LCD_CHARSET
423#undef DEFAULT_LCD_CHARSET
424#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
425#endif
426
427#ifdef CONFIG_PANEL_LCD_PROTO
428#undef DEFAULT_LCD_PROTO
429#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
430#endif
431
432#ifdef CONFIG_PANEL_LCD_PIN_E
433#undef DEFAULT_LCD_PIN_E
434#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
435#endif
436
437#ifdef CONFIG_PANEL_LCD_PIN_RS
438#undef DEFAULT_LCD_PIN_RS
439#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
440#endif
441
442#ifdef CONFIG_PANEL_LCD_PIN_RW
443#undef DEFAULT_LCD_PIN_RW
444#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
445#endif
446
447#ifdef CONFIG_PANEL_LCD_PIN_SCL
448#undef DEFAULT_LCD_PIN_SCL
449#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
450#endif
451
452#ifdef CONFIG_PANEL_LCD_PIN_SDA
453#undef DEFAULT_LCD_PIN_SDA
454#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
455#endif
456
457#ifdef CONFIG_PANEL_LCD_PIN_BL
458#undef DEFAULT_LCD_PIN_BL
459#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
460#endif
461
462#endif /* DEFAULT_PROFILE == 0 */
463
464/* global variables */
465
466/* Device single-open policy control */
467static atomic_t lcd_available = ATOMIC_INIT(1);
468static atomic_t keypad_available = ATOMIC_INIT(1);
469
470static struct pardevice *pprt;
471
472static int keypad_initialized;
473
474static void (*lcd_write_cmd)(int);
475static void (*lcd_write_data)(int);
476static void (*lcd_clear_fast)(void);
477
478static DEFINE_SPINLOCK(pprt_lock);
479static struct timer_list scan_timer;
480
481MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
482
483static int parport = DEFAULT_PARPORT;
484module_param(parport, int, 0000);
485MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
486
487static int profile = DEFAULT_PROFILE;
488module_param(profile, int, 0000);
489MODULE_PARM_DESC(profile,
490 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
491 "4=16x2 nexcom; default=40x2, old kp");
492
493static int keypad_type = NOT_SET;
494module_param(keypad_type, int, 0000);
495MODULE_PARM_DESC(keypad_type,
496 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
497
498static int lcd_type = NOT_SET;
499module_param(lcd_type, int, 0000);
500MODULE_PARM_DESC(lcd_type,
501 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
502
503static int lcd_height = NOT_SET;
504module_param(lcd_height, int, 0000);
505MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
506
507static int lcd_width = NOT_SET;
508module_param(lcd_width, int, 0000);
509MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
510
511static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */
512module_param(lcd_bwidth, int, 0000);
513MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
514
515static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */
516module_param(lcd_hwidth, int, 0000);
517MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
518
519static int lcd_charset = NOT_SET;
520module_param(lcd_charset, int, 0000);
521MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
522
523static int lcd_proto = NOT_SET;
524module_param(lcd_proto, int, 0000);
525MODULE_PARM_DESC(lcd_proto,
526 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
527
528/*
529 * These are the parallel port pins the LCD control signals are connected to.
530 * Set this to 0 if the signal is not used. Set it to its opposite value
531 * (negative) if the signal is negated. -MAXINT is used to indicate that the
532 * pin has not been explicitly specified.
533 *
534 * WARNING! no check will be performed about collisions with keypad !
535 */
536
537static int lcd_e_pin = PIN_NOT_SET;
538module_param(lcd_e_pin, int, 0000);
539MODULE_PARM_DESC(lcd_e_pin,
540 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
541
542static int lcd_rs_pin = PIN_NOT_SET;
543module_param(lcd_rs_pin, int, 0000);
544MODULE_PARM_DESC(lcd_rs_pin,
545 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
546
547static int lcd_rw_pin = PIN_NOT_SET;
548module_param(lcd_rw_pin, int, 0000);
549MODULE_PARM_DESC(lcd_rw_pin,
550 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
551
552static int lcd_cl_pin = PIN_NOT_SET;
553module_param(lcd_cl_pin, int, 0000);
554MODULE_PARM_DESC(lcd_cl_pin,
555 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
556
557static int lcd_da_pin = PIN_NOT_SET;
558module_param(lcd_da_pin, int, 0000);
559MODULE_PARM_DESC(lcd_da_pin,
560 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
561
562static int lcd_bl_pin = PIN_NOT_SET;
563module_param(lcd_bl_pin, int, 0000);
564MODULE_PARM_DESC(lcd_bl_pin,
565 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
566
567/* Deprecated module parameters - consider not using them anymore */
568
569static int lcd_enabled = NOT_SET;
570module_param(lcd_enabled, int, 0000);
571MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
572
573static int keypad_enabled = NOT_SET;
574module_param(keypad_enabled, int, 0000);
575MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
576
577static const unsigned char *lcd_char_conv;
578
579/* for some LCD drivers (ks0074) we need a charset conversion table. */
580static const unsigned char lcd_char_conv_ks0074[256] = {
581 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
582 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
583 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
584 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
585 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
586 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
587 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
588 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
589 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
590 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
591 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
592 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
593 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
594 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
595 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
596 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
597 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
598 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
599 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
600 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
601 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
602 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
603 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
604 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
605 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
606 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
607 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
608 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
609 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
610 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
611 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
612 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
613 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
614};
615
616static const char old_keypad_profile[][4][9] = {
617 {"S0", "Left\n", "Left\n", ""},
618 {"S1", "Down\n", "Down\n", ""},
619 {"S2", "Up\n", "Up\n", ""},
620 {"S3", "Right\n", "Right\n", ""},
621 {"S4", "Esc\n", "Esc\n", ""},
622 {"S5", "Ret\n", "Ret\n", ""},
623 {"", "", "", ""}
624};
625
626/* signals, press, repeat, release */
627static const char new_keypad_profile[][4][9] = {
628 {"S0", "Left\n", "Left\n", ""},
629 {"S1", "Down\n", "Down\n", ""},
630 {"S2", "Up\n", "Up\n", ""},
631 {"S3", "Right\n", "Right\n", ""},
632 {"S4s5", "", "Esc\n", "Esc\n"},
633 {"s4S5", "", "Ret\n", "Ret\n"},
634 {"S4S5", "Help\n", "", ""},
635 /* add new signals above this line */
636 {"", "", "", ""}
637};
638
639/* signals, press, repeat, release */
640static const char nexcom_keypad_profile[][4][9] = {
641 {"a-p-e-", "Down\n", "Down\n", ""},
642 {"a-p-E-", "Ret\n", "Ret\n", ""},
643 {"a-P-E-", "Esc\n", "Esc\n", ""},
644 {"a-P-e-", "Up\n", "Up\n", ""},
645 /* add new signals above this line */
646 {"", "", "", ""}
647};
648
649static const char (*keypad_profile)[4][9] = old_keypad_profile;
650
651/* FIXME: this should be converted to a bit array containing signals states */
652static struct {
653 unsigned char e; /* parallel LCD E (data latch on falling edge) */
654 unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
655 unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
656 unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
657 unsigned char cl; /* serial LCD clock (latch on rising edge) */
658 unsigned char da; /* serial LCD data */
659} bits;
660
661static void init_scan_timer(void);
662
663/* sets data port bits according to current signals values */
664static int set_data_bits(void)
665{
666 int val, bit;
667
668 val = r_dtr(pprt);
669 for (bit = 0; bit < LCD_BITS; bit++)
670 val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
671
672 val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
673 | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
674 | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
675 | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
676 | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
677 | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
678
679 w_dtr(pprt, val);
680 return val;
681}
682
683/* sets ctrl port bits according to current signals values */
684static int set_ctrl_bits(void)
685{
686 int val, bit;
687
688 val = r_ctr(pprt);
689 for (bit = 0; bit < LCD_BITS; bit++)
690 val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
691
692 val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
693 | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
694 | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
695 | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
696 | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
697 | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
698
699 w_ctr(pprt, val);
700 return val;
701}
702
703/* sets ctrl & data port bits according to current signals values */
704static void panel_set_bits(void)
705{
706 set_data_bits();
707 set_ctrl_bits();
708}
709
710/*
711 * Converts a parallel port pin (from -25 to 25) to data and control ports
712 * masks, and data and control port bits. The signal will be considered
713 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
714 *
715 * Result will be used this way :
716 * out(dport, in(dport) & d_val[2] | d_val[signal_state])
717 * out(cport, in(cport) & c_val[2] | c_val[signal_state])
718 */
719static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
720{
721 int d_bit, c_bit, inv;
722
723 d_val[0] = 0;
724 c_val[0] = 0;
725 d_val[1] = 0;
726 c_val[1] = 0;
727 d_val[2] = 0xFF;
728 c_val[2] = 0xFF;
729
730 if (pin == 0)
731 return;
732
733 inv = (pin < 0);
734 if (inv)
735 pin = -pin;
736
737 d_bit = 0;
738 c_bit = 0;
739
740 switch (pin) {
741 case PIN_STROBE: /* strobe, inverted */
742 c_bit = PNL_PSTROBE;
743 inv = !inv;
744 break;
745 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
746 d_bit = 1 << (pin - 2);
747 break;
748 case PIN_AUTOLF: /* autofeed, inverted */
749 c_bit = PNL_PAUTOLF;
750 inv = !inv;
751 break;
752 case PIN_INITP: /* init, direct */
753 c_bit = PNL_PINITP;
754 break;
755 case PIN_SELECP: /* select_in, inverted */
756 c_bit = PNL_PSELECP;
757 inv = !inv;
758 break;
759 default: /* unknown pin, ignore */
760 break;
761 }
762
763 if (c_bit) {
764 c_val[2] &= ~c_bit;
765 c_val[!inv] = c_bit;
766 } else if (d_bit) {
767 d_val[2] &= ~d_bit;
768 d_val[!inv] = d_bit;
769 }
770}
771
772/* sleeps that many milliseconds with a reschedule */
773static void long_sleep(int ms)
774{
775 if (in_interrupt())
776 mdelay(ms);
777 else
778 schedule_timeout_interruptible(msecs_to_jiffies(ms));
779}
780
781/*
782 * send a serial byte to the LCD panel. The caller is responsible for locking
783 * if needed.
784 */
785static void lcd_send_serial(int byte)
786{
787 int bit;
788
789 /*
790 * the data bit is set on D0, and the clock on STROBE.
791 * LCD reads D0 on STROBE's rising edge.
792 */
793 for (bit = 0; bit < 8; bit++) {
794 bits.cl = BIT_CLR; /* CLK low */
795 panel_set_bits();
796 bits.da = byte & 1;
797 panel_set_bits();
798 udelay(2); /* maintain the data during 2 us before CLK up */
799 bits.cl = BIT_SET; /* CLK high */
800 panel_set_bits();
801 udelay(1); /* maintain the strobe during 1 us */
802 byte >>= 1;
803 }
804}
805
806/* turn the backlight on or off */
807static void lcd_backlight(int on)
808{
809 if (lcd.pins.bl == PIN_NONE)
810 return;
811
812 /* The backlight is activated by setting the AUTOFEED line to +5V */
813 spin_lock_irq(&pprt_lock);
814 bits.bl = on;
815 panel_set_bits();
816 spin_unlock_irq(&pprt_lock);
817}
818
819/* send a command to the LCD panel in serial mode */
820static void lcd_write_cmd_s(int cmd)
821{
822 spin_lock_irq(&pprt_lock);
823 lcd_send_serial(0x1F); /* R/W=W, RS=0 */
824 lcd_send_serial(cmd & 0x0F);
825 lcd_send_serial((cmd >> 4) & 0x0F);
826 udelay(40); /* the shortest command takes at least 40 us */
827 spin_unlock_irq(&pprt_lock);
828}
829
830/* send data to the LCD panel in serial mode */
831static void lcd_write_data_s(int data)
832{
833 spin_lock_irq(&pprt_lock);
834 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
835 lcd_send_serial(data & 0x0F);
836 lcd_send_serial((data >> 4) & 0x0F);
837 udelay(40); /* the shortest data takes at least 40 us */
838 spin_unlock_irq(&pprt_lock);
839}
840
841/* send a command to the LCD panel in 8 bits parallel mode */
842static void lcd_write_cmd_p8(int cmd)
843{
844 spin_lock_irq(&pprt_lock);
845 /* present the data to the data port */
846 w_dtr(pprt, cmd);
847 udelay(20); /* maintain the data during 20 us before the strobe */
848
849 bits.e = BIT_SET;
850 bits.rs = BIT_CLR;
851 bits.rw = BIT_CLR;
852 set_ctrl_bits();
853
854 udelay(40); /* maintain the strobe during 40 us */
855
856 bits.e = BIT_CLR;
857 set_ctrl_bits();
858
859 udelay(120); /* the shortest command takes at least 120 us */
860 spin_unlock_irq(&pprt_lock);
861}
862
863/* send data to the LCD panel in 8 bits parallel mode */
864static void lcd_write_data_p8(int data)
865{
866 spin_lock_irq(&pprt_lock);
867 /* present the data to the data port */
868 w_dtr(pprt, data);
869 udelay(20); /* maintain the data during 20 us before the strobe */
870
871 bits.e = BIT_SET;
872 bits.rs = BIT_SET;
873 bits.rw = BIT_CLR;
874 set_ctrl_bits();
875
876 udelay(40); /* maintain the strobe during 40 us */
877
878 bits.e = BIT_CLR;
879 set_ctrl_bits();
880
881 udelay(45); /* the shortest data takes at least 45 us */
882 spin_unlock_irq(&pprt_lock);
883}
884
885/* send a command to the TI LCD panel */
886static void lcd_write_cmd_tilcd(int cmd)
887{
888 spin_lock_irq(&pprt_lock);
889 /* present the data to the control port */
890 w_ctr(pprt, cmd);
891 udelay(60);
892 spin_unlock_irq(&pprt_lock);
893}
894
895/* send data to the TI LCD panel */
896static void lcd_write_data_tilcd(int data)
897{
898 spin_lock_irq(&pprt_lock);
899 /* present the data to the data port */
900 w_dtr(pprt, data);
901 udelay(60);
902 spin_unlock_irq(&pprt_lock);
903}
904
905static void lcd_gotoxy(void)
906{
907 lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
908 | (lcd.addr.y ? lcd.hwidth : 0)
909 /*
910 * we force the cursor to stay at the end of the
911 * line if it wants to go farther
912 */
913 | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
914 (lcd.hwidth - 1) : lcd.bwidth - 1));
915}
916
917static void lcd_print(char c)
918{
919 if (lcd.addr.x < lcd.bwidth) {
920 if (lcd_char_conv)
921 c = lcd_char_conv[(unsigned char)c];
922 lcd_write_data(c);
923 lcd.addr.x++;
924 }
925 /* prevents the cursor from wrapping onto the next line */
926 if (lcd.addr.x == lcd.bwidth)
927 lcd_gotoxy();
928}
929
930/* fills the display with spaces and resets X/Y */
931static void lcd_clear_fast_s(void)
932{
933 int pos;
934
935 lcd.addr.x = 0;
936 lcd.addr.y = 0;
937 lcd_gotoxy();
938
939 spin_lock_irq(&pprt_lock);
940 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
941 lcd_send_serial(0x5F); /* R/W=W, RS=1 */
942 lcd_send_serial(' ' & 0x0F);
943 lcd_send_serial((' ' >> 4) & 0x0F);
944 /* the shortest data takes at least 40 us */
945 udelay(40);
946 }
947 spin_unlock_irq(&pprt_lock);
948
949 lcd.addr.x = 0;
950 lcd.addr.y = 0;
951 lcd_gotoxy();
952}
953
954/* fills the display with spaces and resets X/Y */
955static void lcd_clear_fast_p8(void)
956{
957 int pos;
958
959 lcd.addr.x = 0;
960 lcd.addr.y = 0;
961 lcd_gotoxy();
962
963 spin_lock_irq(&pprt_lock);
964 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
965 /* present the data to the data port */
966 w_dtr(pprt, ' ');
967
968 /* maintain the data during 20 us before the strobe */
969 udelay(20);
970
971 bits.e = BIT_SET;
972 bits.rs = BIT_SET;
973 bits.rw = BIT_CLR;
974 set_ctrl_bits();
975
976 /* maintain the strobe during 40 us */
977 udelay(40);
978
979 bits.e = BIT_CLR;
980 set_ctrl_bits();
981
982 /* the shortest data takes at least 45 us */
983 udelay(45);
984 }
985 spin_unlock_irq(&pprt_lock);
986
987 lcd.addr.x = 0;
988 lcd.addr.y = 0;
989 lcd_gotoxy();
990}
991
992/* fills the display with spaces and resets X/Y */
993static void lcd_clear_fast_tilcd(void)
994{
995 int pos;
996
997 lcd.addr.x = 0;
998 lcd.addr.y = 0;
999 lcd_gotoxy();
1000
1001 spin_lock_irq(&pprt_lock);
1002 for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
1003 /* present the data to the data port */
1004 w_dtr(pprt, ' ');
1005 udelay(60);
1006 }
1007
1008 spin_unlock_irq(&pprt_lock);
1009
1010 lcd.addr.x = 0;
1011 lcd.addr.y = 0;
1012 lcd_gotoxy();
1013}
1014
1015/* clears the display and resets X/Y */
1016static void lcd_clear_display(void)
1017{
1018 lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1019 lcd.addr.x = 0;
1020 lcd.addr.y = 0;
1021 /* we must wait a few milliseconds (15) */
1022 long_sleep(15);
1023}
1024
1025static void lcd_init_display(void)
1026{
1027 lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1028 | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1029
1030 long_sleep(20); /* wait 20 ms after power-up for the paranoid */
1031
1032 /* 8bits, 1 line, small fonts; let's do it 3 times */
1033 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1034 long_sleep(10);
1035 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1036 long_sleep(10);
1037 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1038 long_sleep(10);
1039
1040 /* set font height and lines number */
1041 lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1042 | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1043 | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1044 );
1045 long_sleep(10);
1046
1047 /* display off, cursor off, blink off */
1048 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1049 long_sleep(10);
1050
1051 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL /* set display mode */
1052 | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1053 | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1054 | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1055 );
1056
1057 lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1058
1059 long_sleep(10);
1060
1061 /* entry mode set : increment, cursor shifting */
1062 lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1063
1064 lcd_clear_display();
1065}
1066
1067/*
1068 * These are the file operation function for user access to /dev/lcd
1069 * This function can also be called from inside the kernel, by
1070 * setting file and ppos to NULL.
1071 *
1072 */
1073
1074static inline int handle_lcd_special_code(void)
1075{
1076 /* LCD special codes */
1077
1078 int processed = 0;
1079
1080 char *esc = lcd.esc_seq.buf + 2;
1081 int oldflags = lcd.flags;
1082
1083 /* check for display mode flags */
1084 switch (*esc) {
1085 case 'D': /* Display ON */
1086 lcd.flags |= LCD_FLAG_D;
1087 processed = 1;
1088 break;
1089 case 'd': /* Display OFF */
1090 lcd.flags &= ~LCD_FLAG_D;
1091 processed = 1;
1092 break;
1093 case 'C': /* Cursor ON */
1094 lcd.flags |= LCD_FLAG_C;
1095 processed = 1;
1096 break;
1097 case 'c': /* Cursor OFF */
1098 lcd.flags &= ~LCD_FLAG_C;
1099 processed = 1;
1100 break;
1101 case 'B': /* Blink ON */
1102 lcd.flags |= LCD_FLAG_B;
1103 processed = 1;
1104 break;
1105 case 'b': /* Blink OFF */
1106 lcd.flags &= ~LCD_FLAG_B;
1107 processed = 1;
1108 break;
1109 case '+': /* Back light ON */
1110 lcd.flags |= LCD_FLAG_L;
1111 processed = 1;
1112 break;
1113 case '-': /* Back light OFF */
1114 lcd.flags &= ~LCD_FLAG_L;
1115 processed = 1;
1116 break;
1117 case '*':
1118 /* flash back light using the keypad timer */
1119 if (scan_timer.function) {
1120 if (lcd.light_tempo == 0 &&
1121 ((lcd.flags & LCD_FLAG_L) == 0))
1122 lcd_backlight(1);
1123 lcd.light_tempo = FLASH_LIGHT_TEMPO;
1124 }
1125 processed = 1;
1126 break;
1127 case 'f': /* Small Font */
1128 lcd.flags &= ~LCD_FLAG_F;
1129 processed = 1;
1130 break;
1131 case 'F': /* Large Font */
1132 lcd.flags |= LCD_FLAG_F;
1133 processed = 1;
1134 break;
1135 case 'n': /* One Line */
1136 lcd.flags &= ~LCD_FLAG_N;
1137 processed = 1;
1138 break;
1139 case 'N': /* Two Lines */
1140 lcd.flags |= LCD_FLAG_N;
1141 break;
1142 case 'l': /* Shift Cursor Left */
1143 if (lcd.addr.x > 0) {
1144 /* back one char if not at end of line */
1145 if (lcd.addr.x < lcd.bwidth)
1146 lcd_write_cmd(LCD_CMD_SHIFT);
1147 lcd.addr.x--;
1148 }
1149 processed = 1;
1150 break;
1151 case 'r': /* shift cursor right */
1152 if (lcd.addr.x < lcd.width) {
1153 /* allow the cursor to pass the end of the line */
1154 if (lcd.addr.x < (lcd.bwidth - 1))
1155 lcd_write_cmd(LCD_CMD_SHIFT |
1156 LCD_CMD_SHIFT_RIGHT);
1157 lcd.addr.x++;
1158 }
1159 processed = 1;
1160 break;
1161 case 'L': /* shift display left */
1162 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1163 processed = 1;
1164 break;
1165 case 'R': /* shift display right */
1166 lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1167 LCD_CMD_SHIFT_RIGHT);
1168 processed = 1;
1169 break;
1170 case 'k': { /* kill end of line */
1171 int x;
1172
1173 for (x = lcd.addr.x; x < lcd.bwidth; x++)
1174 lcd_write_data(' ');
1175
1176 /* restore cursor position */
1177 lcd_gotoxy();
1178 processed = 1;
1179 break;
1180 }
1181 case 'I': /* reinitialize display */
1182 lcd_init_display();
1183 processed = 1;
1184 break;
1185 case 'G': {
1186 /* Generator : LGcxxxxx...xx; must have <c> between '0'
1187 * and '7', representing the numerical ASCII code of the
1188 * redefined character, and <xx...xx> a sequence of 16
1189 * hex digits representing 8 bytes for each character.
1190 * Most LCDs will only use 5 lower bits of the 7 first
1191 * bytes.
1192 */
1193
1194 unsigned char cgbytes[8];
1195 unsigned char cgaddr;
1196 int cgoffset;
1197 int shift;
1198 char value;
1199 int addr;
1200
1201 if (!strchr(esc, ';'))
1202 break;
1203
1204 esc++;
1205
1206 cgaddr = *(esc++) - '0';
1207 if (cgaddr > 7) {
1208 processed = 1;
1209 break;
1210 }
1211
1212 cgoffset = 0;
1213 shift = 0;
1214 value = 0;
1215 while (*esc && cgoffset < 8) {
1216 shift ^= 4;
1217 if (*esc >= '0' && *esc <= '9') {
1218 value |= (*esc - '0') << shift;
1219 } else if (*esc >= 'A' && *esc <= 'Z') {
1220 value |= (*esc - 'A' + 10) << shift;
1221 } else if (*esc >= 'a' && *esc <= 'z') {
1222 value |= (*esc - 'a' + 10) << shift;
1223 } else {
1224 esc++;
1225 continue;
1226 }
1227
1228 if (shift == 0) {
1229 cgbytes[cgoffset++] = value;
1230 value = 0;
1231 }
1232
1233 esc++;
1234 }
1235
1236 lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1237 for (addr = 0; addr < cgoffset; addr++)
1238 lcd_write_data(cgbytes[addr]);
1239
1240 /* ensures that we stop writing to CGRAM */
1241 lcd_gotoxy();
1242 processed = 1;
1243 break;
1244 }
1245 case 'x': /* gotoxy : LxXXX[yYYY]; */
1246 case 'y': /* gotoxy : LyYYY[xXXX]; */
1247 if (!strchr(esc, ';'))
1248 break;
1249
1250 while (*esc) {
1251 if (*esc == 'x') {
1252 esc++;
1253 if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1254 break;
1255 } else if (*esc == 'y') {
1256 esc++;
1257 if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1258 break;
1259 } else {
1260 break;
1261 }
1262 }
1263
1264 lcd_gotoxy();
1265 processed = 1;
1266 break;
1267 }
1268
1269 /* TODO: This indent party here got ugly, clean it! */
1270 /* Check whether one flag was changed */
1271 if (oldflags != lcd.flags) {
1272 /* check whether one of B,C,D flags were changed */
1273 if ((oldflags ^ lcd.flags) &
1274 (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1275 /* set display mode */
1276 lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1277 | ((lcd.flags & LCD_FLAG_D)
1278 ? LCD_CMD_DISPLAY_ON : 0)
1279 | ((lcd.flags & LCD_FLAG_C)
1280 ? LCD_CMD_CURSOR_ON : 0)
1281 | ((lcd.flags & LCD_FLAG_B)
1282 ? LCD_CMD_BLINK_ON : 0));
1283 /* check whether one of F,N flags was changed */
1284 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1285 lcd_write_cmd(LCD_CMD_FUNCTION_SET
1286 | LCD_CMD_DATA_LEN_8BITS
1287 | ((lcd.flags & LCD_FLAG_F)
1288 ? LCD_CMD_TWO_LINES : 0)
1289 | ((lcd.flags & LCD_FLAG_N)
1290 ? LCD_CMD_FONT_5X10_DOTS
1291 : 0));
1292 /* check whether L flag was changed */
1293 else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1294 if (lcd.flags & (LCD_FLAG_L))
1295 lcd_backlight(1);
1296 else if (lcd.light_tempo == 0)
1297 /*
1298 * switch off the light only when the tempo
1299 * lighting is gone
1300 */
1301 lcd_backlight(0);
1302 }
1303 }
1304
1305 return processed;
1306}
1307
1308static void lcd_write_char(char c)
1309{
1310 /* first, we'll test if we're in escape mode */
1311 if ((c != '\n') && lcd.esc_seq.len >= 0) {
1312 /* yes, let's add this char to the buffer */
1313 lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1314 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1315 } else {
1316 /* aborts any previous escape sequence */
1317 lcd.esc_seq.len = -1;
1318
1319 switch (c) {
1320 case LCD_ESCAPE_CHAR:
1321 /* start of an escape sequence */
1322 lcd.esc_seq.len = 0;
1323 lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1324 break;
1325 case '\b':
1326 /* go back one char and clear it */
1327 if (lcd.addr.x > 0) {
1328 /*
1329 * check if we're not at the
1330 * end of the line
1331 */
1332 if (lcd.addr.x < lcd.bwidth)
1333 /* back one char */
1334 lcd_write_cmd(LCD_CMD_SHIFT);
1335 lcd.addr.x--;
1336 }
1337 /* replace with a space */
1338 lcd_write_data(' ');
1339 /* back one char again */
1340 lcd_write_cmd(LCD_CMD_SHIFT);
1341 break;
1342 case '\014':
1343 /* quickly clear the display */
1344 lcd_clear_fast();
1345 break;
1346 case '\n':
1347 /*
1348 * flush the remainder of the current line and
1349 * go to the beginning of the next line
1350 */
1351 for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1352 lcd_write_data(' ');
1353 lcd.addr.x = 0;
1354 lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1355 lcd_gotoxy();
1356 break;
1357 case '\r':
1358 /* go to the beginning of the same line */
1359 lcd.addr.x = 0;
1360 lcd_gotoxy();
1361 break;
1362 case '\t':
1363 /* print a space instead of the tab */
1364 lcd_print(' ');
1365 break;
1366 default:
1367 /* simply print this char */
1368 lcd_print(c);
1369 break;
1370 }
1371 }
1372
1373 /*
1374 * now we'll see if we're in an escape mode and if the current
1375 * escape sequence can be understood.
1376 */
1377 if (lcd.esc_seq.len >= 2) {
1378 int processed = 0;
1379
1380 if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1381 /* clear the display */
1382 lcd_clear_fast();
1383 processed = 1;
1384 } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1385 /* cursor to home */
1386 lcd.addr.x = 0;
1387 lcd.addr.y = 0;
1388 lcd_gotoxy();
1389 processed = 1;
1390 }
1391 /* codes starting with ^[[L */
1392 else if ((lcd.esc_seq.len >= 3) &&
1393 (lcd.esc_seq.buf[0] == '[') &&
1394 (lcd.esc_seq.buf[1] == 'L')) {
1395 processed = handle_lcd_special_code();
1396 }
1397
1398 /* LCD special escape codes */
1399 /*
1400 * flush the escape sequence if it's been processed
1401 * or if it is getting too long.
1402 */
1403 if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1404 lcd.esc_seq.len = -1;
1405 } /* escape codes */
1406}
1407
1408static ssize_t lcd_write(struct file *file,
1409 const char __user *buf, size_t count, loff_t *ppos)
1410{
1411 const char __user *tmp = buf;
1412 char c;
1413
1414 for (; count-- > 0; (*ppos)++, tmp++) {
1415 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1416 /*
1417 * let's be a little nice with other processes
1418 * that need some CPU
1419 */
1420 schedule();
1421
1422 if (get_user(c, tmp))
1423 return -EFAULT;
1424
1425 lcd_write_char(c);
1426 }
1427
1428 return tmp - buf;
1429}
1430
1431static int lcd_open(struct inode *inode, struct file *file)
1432{
1433 if (!atomic_dec_and_test(&lcd_available))
1434 return -EBUSY; /* open only once at a time */
1435
1436 if (file->f_mode & FMODE_READ) /* device is write-only */
1437 return -EPERM;
1438
1439 if (lcd.must_clear) {
1440 lcd_clear_display();
1441 lcd.must_clear = false;
1442 }
1443 return nonseekable_open(inode, file);
1444}
1445
1446static int lcd_release(struct inode *inode, struct file *file)
1447{
1448 atomic_inc(&lcd_available);
1449 return 0;
1450}
1451
1452static const struct file_operations lcd_fops = {
1453 .write = lcd_write,
1454 .open = lcd_open,
1455 .release = lcd_release,
1456 .llseek = no_llseek,
1457};
1458
1459static struct miscdevice lcd_dev = {
1460 .minor = LCD_MINOR,
1461 .name = "lcd",
1462 .fops = &lcd_fops,
1463};
1464
1465/* public function usable from the kernel for any purpose */
1466static void panel_lcd_print(const char *s)
1467{
1468 const char *tmp = s;
1469 int count = strlen(s);
1470
1471 if (lcd.enabled && lcd.initialized) {
1472 for (; count-- > 0; tmp++) {
1473 if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1474 /*
1475 * let's be a little nice with other processes
1476 * that need some CPU
1477 */
1478 schedule();
1479
1480 lcd_write_char(*tmp);
1481 }
1482 }
1483}
1484
1485/* initialize the LCD driver */
1486static void lcd_init(void)
1487{
1488 switch (selected_lcd_type) {
1489 case LCD_TYPE_OLD:
1490 /* parallel mode, 8 bits */
1491 lcd.proto = LCD_PROTO_PARALLEL;
1492 lcd.charset = LCD_CHARSET_NORMAL;
1493 lcd.pins.e = PIN_STROBE;
1494 lcd.pins.rs = PIN_AUTOLF;
1495
1496 lcd.width = 40;
1497 lcd.bwidth = 40;
1498 lcd.hwidth = 64;
1499 lcd.height = 2;
1500 break;
1501 case LCD_TYPE_KS0074:
1502 /* serial mode, ks0074 */
1503 lcd.proto = LCD_PROTO_SERIAL;
1504 lcd.charset = LCD_CHARSET_KS0074;
1505 lcd.pins.bl = PIN_AUTOLF;
1506 lcd.pins.cl = PIN_STROBE;
1507 lcd.pins.da = PIN_D0;
1508
1509 lcd.width = 16;
1510 lcd.bwidth = 40;
1511 lcd.hwidth = 16;
1512 lcd.height = 2;
1513 break;
1514 case LCD_TYPE_NEXCOM:
1515 /* parallel mode, 8 bits, generic */
1516 lcd.proto = LCD_PROTO_PARALLEL;
1517 lcd.charset = LCD_CHARSET_NORMAL;
1518 lcd.pins.e = PIN_AUTOLF;
1519 lcd.pins.rs = PIN_SELECP;
1520 lcd.pins.rw = PIN_INITP;
1521
1522 lcd.width = 16;
1523 lcd.bwidth = 40;
1524 lcd.hwidth = 64;
1525 lcd.height = 2;
1526 break;
1527 case LCD_TYPE_CUSTOM:
1528 /* customer-defined */
1529 lcd.proto = DEFAULT_LCD_PROTO;
1530 lcd.charset = DEFAULT_LCD_CHARSET;
1531 /* default geometry will be set later */
1532 break;
1533 case LCD_TYPE_HANTRONIX:
1534 /* parallel mode, 8 bits, hantronix-like */
1535 default:
1536 lcd.proto = LCD_PROTO_PARALLEL;
1537 lcd.charset = LCD_CHARSET_NORMAL;
1538 lcd.pins.e = PIN_STROBE;
1539 lcd.pins.rs = PIN_SELECP;
1540
1541 lcd.width = 16;
1542 lcd.bwidth = 40;
1543 lcd.hwidth = 64;
1544 lcd.height = 2;
1545 break;
1546 }
1547
1548 /* Overwrite with module params set on loading */
1549 if (lcd_height != NOT_SET)
1550 lcd.height = lcd_height;
1551 if (lcd_width != NOT_SET)
1552 lcd.width = lcd_width;
1553 if (lcd_bwidth != NOT_SET)
1554 lcd.bwidth = lcd_bwidth;
1555 if (lcd_hwidth != NOT_SET)
1556 lcd.hwidth = lcd_hwidth;
1557 if (lcd_charset != NOT_SET)
1558 lcd.charset = lcd_charset;
1559 if (lcd_proto != NOT_SET)
1560 lcd.proto = lcd_proto;
1561 if (lcd_e_pin != PIN_NOT_SET)
1562 lcd.pins.e = lcd_e_pin;
1563 if (lcd_rs_pin != PIN_NOT_SET)
1564 lcd.pins.rs = lcd_rs_pin;
1565 if (lcd_rw_pin != PIN_NOT_SET)
1566 lcd.pins.rw = lcd_rw_pin;
1567 if (lcd_cl_pin != PIN_NOT_SET)
1568 lcd.pins.cl = lcd_cl_pin;
1569 if (lcd_da_pin != PIN_NOT_SET)
1570 lcd.pins.da = lcd_da_pin;
1571 if (lcd_bl_pin != PIN_NOT_SET)
1572 lcd.pins.bl = lcd_bl_pin;
1573
1574 /* this is used to catch wrong and default values */
1575 if (lcd.width <= 0)
1576 lcd.width = DEFAULT_LCD_WIDTH;
1577 if (lcd.bwidth <= 0)
1578 lcd.bwidth = DEFAULT_LCD_BWIDTH;
1579 if (lcd.hwidth <= 0)
1580 lcd.hwidth = DEFAULT_LCD_HWIDTH;
1581 if (lcd.height <= 0)
1582 lcd.height = DEFAULT_LCD_HEIGHT;
1583
1584 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */
1585 lcd_write_cmd = lcd_write_cmd_s;
1586 lcd_write_data = lcd_write_data_s;
1587 lcd_clear_fast = lcd_clear_fast_s;
1588
1589 if (lcd.pins.cl == PIN_NOT_SET)
1590 lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1591 if (lcd.pins.da == PIN_NOT_SET)
1592 lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1593
1594 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1595 lcd_write_cmd = lcd_write_cmd_p8;
1596 lcd_write_data = lcd_write_data_p8;
1597 lcd_clear_fast = lcd_clear_fast_p8;
1598
1599 if (lcd.pins.e == PIN_NOT_SET)
1600 lcd.pins.e = DEFAULT_LCD_PIN_E;
1601 if (lcd.pins.rs == PIN_NOT_SET)
1602 lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1603 if (lcd.pins.rw == PIN_NOT_SET)
1604 lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1605 } else {
1606 lcd_write_cmd = lcd_write_cmd_tilcd;
1607 lcd_write_data = lcd_write_data_tilcd;
1608 lcd_clear_fast = lcd_clear_fast_tilcd;
1609 }
1610
1611 if (lcd.pins.bl == PIN_NOT_SET)
1612 lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1613
1614 if (lcd.pins.e == PIN_NOT_SET)
1615 lcd.pins.e = PIN_NONE;
1616 if (lcd.pins.rs == PIN_NOT_SET)
1617 lcd.pins.rs = PIN_NONE;
1618 if (lcd.pins.rw == PIN_NOT_SET)
1619 lcd.pins.rw = PIN_NONE;
1620 if (lcd.pins.bl == PIN_NOT_SET)
1621 lcd.pins.bl = PIN_NONE;
1622 if (lcd.pins.cl == PIN_NOT_SET)
1623 lcd.pins.cl = PIN_NONE;
1624 if (lcd.pins.da == PIN_NOT_SET)
1625 lcd.pins.da = PIN_NONE;
1626
1627 if (lcd.charset == NOT_SET)
1628 lcd.charset = DEFAULT_LCD_CHARSET;
1629
1630 if (lcd.charset == LCD_CHARSET_KS0074)
1631 lcd_char_conv = lcd_char_conv_ks0074;
1632 else
1633 lcd_char_conv = NULL;
1634
1635 if (lcd.pins.bl != PIN_NONE)
1636 init_scan_timer();
1637
1638 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1639 lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1640 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1641 lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1642 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1643 lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1644 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1645 lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1646 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1647 lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1648 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1649 lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1650
1651 /*
1652 * before this line, we must NOT send anything to the display.
1653 * Since lcd_init_display() needs to write data, we have to
1654 * enable mark the LCD initialized just before.
1655 */
1656 lcd.initialized = true;
1657 lcd_init_display();
1658
1659 /* display a short message */
1660#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1661#ifdef CONFIG_PANEL_BOOT_MESSAGE
1662 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1663#endif
1664#else
1665 panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1666 PANEL_VERSION);
1667#endif
1668 lcd.addr.x = 0;
1669 lcd.addr.y = 0;
1670 /* clear the display on the next device opening */
1671 lcd.must_clear = true;
1672 lcd_gotoxy();
1673}
1674
1675/*
1676 * These are the file operation function for user access to /dev/keypad
1677 */
1678
1679static ssize_t keypad_read(struct file *file,
1680 char __user *buf, size_t count, loff_t *ppos)
1681{
1682 unsigned i = *ppos;
1683 char __user *tmp = buf;
1684
1685 if (keypad_buflen == 0) {
1686 if (file->f_flags & O_NONBLOCK)
1687 return -EAGAIN;
1688
1689 if (wait_event_interruptible(keypad_read_wait,
1690 keypad_buflen != 0))
1691 return -EINTR;
1692 }
1693
1694 for (; count-- > 0 && (keypad_buflen > 0);
1695 ++i, ++tmp, --keypad_buflen) {
1696 put_user(keypad_buffer[keypad_start], tmp);
1697 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1698 }
1699 *ppos = i;
1700
1701 return tmp - buf;
1702}
1703
1704static int keypad_open(struct inode *inode, struct file *file)
1705{
1706 if (!atomic_dec_and_test(&keypad_available))
1707 return -EBUSY; /* open only once at a time */
1708
1709 if (file->f_mode & FMODE_WRITE) /* device is read-only */
1710 return -EPERM;
1711
1712 keypad_buflen = 0; /* flush the buffer on opening */
1713 return 0;
1714}
1715
1716static int keypad_release(struct inode *inode, struct file *file)
1717{
1718 atomic_inc(&keypad_available);
1719 return 0;
1720}
1721
1722static const struct file_operations keypad_fops = {
1723 .read = keypad_read, /* read */
1724 .open = keypad_open, /* open */
1725 .release = keypad_release, /* close */
1726 .llseek = default_llseek,
1727};
1728
1729static struct miscdevice keypad_dev = {
1730 .minor = KEYPAD_MINOR,
1731 .name = "keypad",
1732 .fops = &keypad_fops,
1733};
1734
1735static void keypad_send_key(const char *string, int max_len)
1736{
1737 /* send the key to the device only if a process is attached to it. */
1738 if (!atomic_read(&keypad_available)) {
1739 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1740 keypad_buffer[(keypad_start + keypad_buflen++) %
1741 KEYPAD_BUFFER] = *string++;
1742 }
1743 wake_up_interruptible(&keypad_read_wait);
1744 }
1745}
1746
1747/* this function scans all the bits involving at least one logical signal,
1748 * and puts the results in the bitfield "phys_read" (one bit per established
1749 * contact), and sets "phys_read_prev" to "phys_read".
1750 *
1751 * Note: to debounce input signals, we will only consider as switched a signal
1752 * which is stable across 2 measures. Signals which are different between two
1753 * reads will be kept as they previously were in their logical form (phys_prev).
1754 * A signal which has just switched will have a 1 in
1755 * (phys_read ^ phys_read_prev).
1756 */
1757static void phys_scan_contacts(void)
1758{
1759 int bit, bitval;
1760 char oldval;
1761 char bitmask;
1762 char gndmask;
1763
1764 phys_prev = phys_curr;
1765 phys_read_prev = phys_read;
1766 phys_read = 0; /* flush all signals */
1767
1768 /* keep track of old value, with all outputs disabled */
1769 oldval = r_dtr(pprt) | scan_mask_o;
1770 /* activate all keyboard outputs (active low) */
1771 w_dtr(pprt, oldval & ~scan_mask_o);
1772
1773 /* will have a 1 for each bit set to gnd */
1774 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1775 /* disable all matrix signals */
1776 w_dtr(pprt, oldval);
1777
1778 /* now that all outputs are cleared, the only active input bits are
1779 * directly connected to the ground
1780 */
1781
1782 /* 1 for each grounded input */
1783 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1784
1785 /* grounded inputs are signals 40-44 */
1786 phys_read |= (__u64)gndmask << 40;
1787
1788 if (bitmask != gndmask) {
1789 /*
1790 * since clearing the outputs changed some inputs, we know
1791 * that some input signals are currently tied to some outputs.
1792 * So we'll scan them.
1793 */
1794 for (bit = 0; bit < 8; bit++) {
1795 bitval = BIT(bit);
1796
1797 if (!(scan_mask_o & bitval)) /* skip unused bits */
1798 continue;
1799
1800 w_dtr(pprt, oldval & ~bitval); /* enable this output */
1801 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1802 phys_read |= (__u64)bitmask << (5 * bit);
1803 }
1804 w_dtr(pprt, oldval); /* disable all outputs */
1805 }
1806 /*
1807 * this is easy: use old bits when they are flapping,
1808 * use new ones when stable
1809 */
1810 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1811 (phys_read & ~(phys_read ^ phys_read_prev));
1812}
1813
1814static inline int input_state_high(struct logical_input *input)
1815{
1816#if 0
1817 /* FIXME:
1818 * this is an invalid test. It tries to catch
1819 * transitions from single-key to multiple-key, but
1820 * doesn't take into account the contacts polarity.
1821 * The only solution to the problem is to parse keys
1822 * from the most complex to the simplest combinations,
1823 * and mark them as 'caught' once a combination
1824 * matches, then unmatch it for all other ones.
1825 */
1826
1827 /* try to catch dangerous transitions cases :
1828 * someone adds a bit, so this signal was a false
1829 * positive resulting from a transition. We should
1830 * invalidate the signal immediately and not call the
1831 * release function.
1832 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1833 */
1834 if (((phys_prev & input->mask) == input->value) &&
1835 ((phys_curr & input->mask) > input->value)) {
1836 input->state = INPUT_ST_LOW; /* invalidate */
1837 return 1;
1838 }
1839#endif
1840
1841 if ((phys_curr & input->mask) == input->value) {
1842 if ((input->type == INPUT_TYPE_STD) &&
1843 (input->high_timer == 0)) {
1844 input->high_timer++;
1845 if (input->u.std.press_fct)
1846 input->u.std.press_fct(input->u.std.press_data);
1847 } else if (input->type == INPUT_TYPE_KBD) {
1848 /* will turn on the light */
1849 keypressed = 1;
1850
1851 if (input->high_timer == 0) {
1852 char *press_str = input->u.kbd.press_str;
1853
1854 if (press_str[0]) {
1855 int s = sizeof(input->u.kbd.press_str);
1856
1857 keypad_send_key(press_str, s);
1858 }
1859 }
1860
1861 if (input->u.kbd.repeat_str[0]) {
1862 char *repeat_str = input->u.kbd.repeat_str;
1863
1864 if (input->high_timer >= KEYPAD_REP_START) {
1865 int s = sizeof(input->u.kbd.repeat_str);
1866
1867 input->high_timer -= KEYPAD_REP_DELAY;
1868 keypad_send_key(repeat_str, s);
1869 }
1870 /* we will need to come back here soon */
1871 inputs_stable = 0;
1872 }
1873
1874 if (input->high_timer < 255)
1875 input->high_timer++;
1876 }
1877 return 1;
1878 }
1879
1880 /* else signal falling down. Let's fall through. */
1881 input->state = INPUT_ST_FALLING;
1882 input->fall_timer = 0;
1883
1884 return 0;
1885}
1886
1887static inline void input_state_falling(struct logical_input *input)
1888{
1889#if 0
1890 /* FIXME !!! same comment as in input_state_high */
1891 if (((phys_prev & input->mask) == input->value) &&
1892 ((phys_curr & input->mask) > input->value)) {
1893 input->state = INPUT_ST_LOW; /* invalidate */
1894 return;
1895 }
1896#endif
1897
1898 if ((phys_curr & input->mask) == input->value) {
1899 if (input->type == INPUT_TYPE_KBD) {
1900 /* will turn on the light */
1901 keypressed = 1;
1902
1903 if (input->u.kbd.repeat_str[0]) {
1904 char *repeat_str = input->u.kbd.repeat_str;
1905
1906 if (input->high_timer >= KEYPAD_REP_START) {
1907 int s = sizeof(input->u.kbd.repeat_str);
1908
1909 input->high_timer -= KEYPAD_REP_DELAY;
1910 keypad_send_key(repeat_str, s);
1911 }
1912 /* we will need to come back here soon */
1913 inputs_stable = 0;
1914 }
1915
1916 if (input->high_timer < 255)
1917 input->high_timer++;
1918 }
1919 input->state = INPUT_ST_HIGH;
1920 } else if (input->fall_timer >= input->fall_time) {
1921 /* call release event */
1922 if (input->type == INPUT_TYPE_STD) {
1923 void (*release_fct)(int) = input->u.std.release_fct;
1924
1925 if (release_fct)
1926 release_fct(input->u.std.release_data);
1927 } else if (input->type == INPUT_TYPE_KBD) {
1928 char *release_str = input->u.kbd.release_str;
1929
1930 if (release_str[0]) {
1931 int s = sizeof(input->u.kbd.release_str);
1932
1933 keypad_send_key(release_str, s);
1934 }
1935 }
1936
1937 input->state = INPUT_ST_LOW;
1938 } else {
1939 input->fall_timer++;
1940 inputs_stable = 0;
1941 }
1942}
1943
1944static void panel_process_inputs(void)
1945{
1946 struct list_head *item;
1947 struct logical_input *input;
1948
1949 keypressed = 0;
1950 inputs_stable = 1;
1951 list_for_each(item, &logical_inputs) {
1952 input = list_entry(item, struct logical_input, list);
1953
1954 switch (input->state) {
1955 case INPUT_ST_LOW:
1956 if ((phys_curr & input->mask) != input->value)
1957 break;
1958 /* if all needed ones were already set previously,
1959 * this means that this logical signal has been
1960 * activated by the releasing of another combined
1961 * signal, so we don't want to match.
1962 * eg: AB -(release B)-> A -(release A)-> 0 :
1963 * don't match A.
1964 */
1965 if ((phys_prev & input->mask) == input->value)
1966 break;
1967 input->rise_timer = 0;
1968 input->state = INPUT_ST_RISING;
1969 /* no break here, fall through */
1970 case INPUT_ST_RISING:
1971 if ((phys_curr & input->mask) != input->value) {
1972 input->state = INPUT_ST_LOW;
1973 break;
1974 }
1975 if (input->rise_timer < input->rise_time) {
1976 inputs_stable = 0;
1977 input->rise_timer++;
1978 break;
1979 }
1980 input->high_timer = 0;
1981 input->state = INPUT_ST_HIGH;
1982 /* no break here, fall through */
1983 case INPUT_ST_HIGH:
1984 if (input_state_high(input))
1985 break;
1986 /* no break here, fall through */
1987 case INPUT_ST_FALLING:
1988 input_state_falling(input);
1989 }
1990 }
1991}
1992
1993static void panel_scan_timer(void)
1994{
1995 if (keypad.enabled && keypad_initialized) {
1996 if (spin_trylock_irq(&pprt_lock)) {
1997 phys_scan_contacts();
1998
1999 /* no need for the parport anymore */
2000 spin_unlock_irq(&pprt_lock);
2001 }
2002
2003 if (!inputs_stable || phys_curr != phys_prev)
2004 panel_process_inputs();
2005 }
2006
2007 if (lcd.enabled && lcd.initialized) {
2008 if (keypressed) {
2009 if (lcd.light_tempo == 0 &&
2010 ((lcd.flags & LCD_FLAG_L) == 0))
2011 lcd_backlight(1);
2012 lcd.light_tempo = FLASH_LIGHT_TEMPO;
2013 } else if (lcd.light_tempo > 0) {
2014 lcd.light_tempo--;
2015 if (lcd.light_tempo == 0 &&
2016 ((lcd.flags & LCD_FLAG_L) == 0))
2017 lcd_backlight(0);
2018 }
2019 }
2020
2021 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2022}
2023
2024static void init_scan_timer(void)
2025{
2026 if (scan_timer.function)
2027 return; /* already started */
2028
2029 setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2030 scan_timer.expires = jiffies + INPUT_POLL_TIME;
2031 add_timer(&scan_timer);
2032}
2033
2034/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2035 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2036 * corresponding to out and in bits respectively.
2037 * returns 1 if ok, 0 if error (in which case, nothing is written).
2038 */
2039static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
2040 u8 *imask, u8 *omask)
2041{
2042 const char sigtab[] = "EeSsPpAaBb";
2043 u8 im, om;
2044 __u64 m, v;
2045
2046 om = 0;
2047 im = 0;
2048 m = 0ULL;
2049 v = 0ULL;
2050 while (*name) {
2051 int in, out, bit, neg;
2052 const char *idx;
2053
2054 idx = strchr(sigtab, *name);
2055 if (!idx)
2056 return 0; /* input name not found */
2057
2058 in = idx - sigtab;
2059 neg = (in & 1); /* odd (lower) names are negated */
2060 in >>= 1;
2061 im |= BIT(in);
2062
2063 name++;
2064 if (*name >= '0' && *name <= '7') {
2065 out = *name - '0';
2066 om |= BIT(out);
2067 } else if (*name == '-') {
2068 out = 8;
2069 } else {
2070 return 0; /* unknown bit name */
2071 }
2072
2073 bit = (out * 5) + in;
2074
2075 m |= 1ULL << bit;
2076 if (!neg)
2077 v |= 1ULL << bit;
2078 name++;
2079 }
2080 *mask = m;
2081 *value = v;
2082 if (imask)
2083 *imask |= im;
2084 if (omask)
2085 *omask |= om;
2086 return 1;
2087}
2088
2089/* tries to bind a key to the signal name <name>. The key will send the
2090 * strings <press>, <repeat>, <release> for these respective events.
2091 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2092 */
2093static struct logical_input *panel_bind_key(const char *name, const char *press,
2094 const char *repeat,
2095 const char *release)
2096{
2097 struct logical_input *key;
2098
2099 key = kzalloc(sizeof(*key), GFP_KERNEL);
2100 if (!key)
2101 return NULL;
2102
2103 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2104 &scan_mask_o)) {
2105 kfree(key);
2106 return NULL;
2107 }
2108
2109 key->type = INPUT_TYPE_KBD;
2110 key->state = INPUT_ST_LOW;
2111 key->rise_time = 1;
2112 key->fall_time = 1;
2113
2114 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2115 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2116 strncpy(key->u.kbd.release_str, release,
2117 sizeof(key->u.kbd.release_str));
2118 list_add(&key->list, &logical_inputs);
2119 return key;
2120}
2121
2122#if 0
2123/* tries to bind a callback function to the signal name <name>. The function
2124 * <press_fct> will be called with the <press_data> arg when the signal is
2125 * activated, and so on for <release_fct>/<release_data>
2126 * Returns the pointer to the new signal if ok, NULL if the signal could not
2127 * be bound.
2128 */
2129static struct logical_input *panel_bind_callback(char *name,
2130 void (*press_fct)(int),
2131 int press_data,
2132 void (*release_fct)(int),
2133 int release_data)
2134{
2135 struct logical_input *callback;
2136
2137 callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2138 if (!callback)
2139 return NULL;
2140
2141 memset(callback, 0, sizeof(struct logical_input));
2142 if (!input_name2mask(name, &callback->mask, &callback->value,
2143 &scan_mask_i, &scan_mask_o))
2144 return NULL;
2145
2146 callback->type = INPUT_TYPE_STD;
2147 callback->state = INPUT_ST_LOW;
2148 callback->rise_time = 1;
2149 callback->fall_time = 1;
2150 callback->u.std.press_fct = press_fct;
2151 callback->u.std.press_data = press_data;
2152 callback->u.std.release_fct = release_fct;
2153 callback->u.std.release_data = release_data;
2154 list_add(&callback->list, &logical_inputs);
2155 return callback;
2156}
2157#endif
2158
2159static void keypad_init(void)
2160{
2161 int keynum;
2162
2163 init_waitqueue_head(&keypad_read_wait);
2164 keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2165
2166 /* Let's create all known keys */
2167
2168 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2169 panel_bind_key(keypad_profile[keynum][0],
2170 keypad_profile[keynum][1],
2171 keypad_profile[keynum][2],
2172 keypad_profile[keynum][3]);
2173 }
2174
2175 init_scan_timer();
2176 keypad_initialized = 1;
2177}
2178
2179/**************************************************/
2180/* device initialization */
2181/**************************************************/
2182
2183static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2184 void *unused)
2185{
2186 if (lcd.enabled && lcd.initialized) {
2187 switch (code) {
2188 case SYS_DOWN:
2189 panel_lcd_print
2190 ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2191 break;
2192 case SYS_HALT:
2193 panel_lcd_print
2194 ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2195 break;
2196 case SYS_POWER_OFF:
2197 panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2198 break;
2199 default:
2200 break;
2201 }
2202 }
2203 return NOTIFY_DONE;
2204}
2205
2206static struct notifier_block panel_notifier = {
2207 panel_notify_sys,
2208 NULL,
2209 0
2210};
2211
2212static void panel_attach(struct parport *port)
2213{
2214 struct pardev_cb panel_cb;
2215
2216 if (port->number != parport)
2217 return;
2218
2219 if (pprt) {
2220 pr_err("%s: port->number=%d parport=%d, already registered!\n",
2221 __func__, port->number, parport);
2222 return;
2223 }
2224
2225 memset(&panel_cb, 0, sizeof(panel_cb));
2226 panel_cb.private = &pprt;
2227 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
2228
2229 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
2230 if (!pprt) {
2231 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2232 __func__, port->number, parport);
2233 return;
2234 }
2235
2236 if (parport_claim(pprt)) {
2237 pr_err("could not claim access to parport%d. Aborting.\n",
2238 parport);
2239 goto err_unreg_device;
2240 }
2241
2242 /* must init LCD first, just in case an IRQ from the keypad is
2243 * generated at keypad init
2244 */
2245 if (lcd.enabled) {
2246 lcd_init();
2247 if (misc_register(&lcd_dev))
2248 goto err_unreg_device;
2249 }
2250
2251 if (keypad.enabled) {
2252 keypad_init();
2253 if (misc_register(&keypad_dev))
2254 goto err_lcd_unreg;
2255 }
2256 register_reboot_notifier(&panel_notifier);
2257 return;
2258
2259err_lcd_unreg:
2260 if (lcd.enabled)
2261 misc_deregister(&lcd_dev);
2262err_unreg_device:
2263 parport_unregister_device(pprt);
2264 pprt = NULL;
2265}
2266
2267static void panel_detach(struct parport *port)
2268{
2269 if (port->number != parport)
2270 return;
2271
2272 if (!pprt) {
2273 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2274 __func__, port->number, parport);
2275 return;
2276 }
2277 if (scan_timer.function)
2278 del_timer_sync(&scan_timer);
2279
2280 if (pprt) {
2281 if (keypad.enabled) {
2282 misc_deregister(&keypad_dev);
2283 keypad_initialized = 0;
2284 }
2285
2286 if (lcd.enabled) {
2287 panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2288 "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2289 misc_deregister(&lcd_dev);
2290 lcd.initialized = false;
2291 }
2292
2293 /* TODO: free all input signals */
2294 parport_release(pprt);
2295 parport_unregister_device(pprt);
2296 pprt = NULL;
2297 unregister_reboot_notifier(&panel_notifier);
2298 }
2299}
2300
2301static struct parport_driver panel_driver = {
2302 .name = "panel",
2303 .match_port = panel_attach,
2304 .detach = panel_detach,
2305 .devmodel = true,
2306};
2307
2308/* init function */
2309static int __init panel_init_module(void)
2310{
2311 int selected_keypad_type = NOT_SET, err;
2312
2313 /* take care of an eventual profile */
2314 switch (profile) {
2315 case PANEL_PROFILE_CUSTOM:
2316 /* custom profile */
2317 selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2318 selected_lcd_type = DEFAULT_LCD_TYPE;
2319 break;
2320 case PANEL_PROFILE_OLD:
2321 /* 8 bits, 2*16, old keypad */
2322 selected_keypad_type = KEYPAD_TYPE_OLD;
2323 selected_lcd_type = LCD_TYPE_OLD;
2324
2325 /* TODO: This two are a little hacky, sort it out later */
2326 if (lcd_width == NOT_SET)
2327 lcd_width = 16;
2328 if (lcd_hwidth == NOT_SET)
2329 lcd_hwidth = 16;
2330 break;
2331 case PANEL_PROFILE_NEW:
2332 /* serial, 2*16, new keypad */
2333 selected_keypad_type = KEYPAD_TYPE_NEW;
2334 selected_lcd_type = LCD_TYPE_KS0074;
2335 break;
2336 case PANEL_PROFILE_HANTRONIX:
2337 /* 8 bits, 2*16 hantronix-like, no keypad */
2338 selected_keypad_type = KEYPAD_TYPE_NONE;
2339 selected_lcd_type = LCD_TYPE_HANTRONIX;
2340 break;
2341 case PANEL_PROFILE_NEXCOM:
2342 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2343 selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2344 selected_lcd_type = LCD_TYPE_NEXCOM;
2345 break;
2346 case PANEL_PROFILE_LARGE:
2347 /* 8 bits, 2*40, old keypad */
2348 selected_keypad_type = KEYPAD_TYPE_OLD;
2349 selected_lcd_type = LCD_TYPE_OLD;
2350 break;
2351 }
2352
2353 /*
2354 * Overwrite selection with module param values (both keypad and lcd),
2355 * where the deprecated params have lower prio.
2356 */
2357 if (keypad_enabled != NOT_SET)
2358 selected_keypad_type = keypad_enabled;
2359 if (keypad_type != NOT_SET)
2360 selected_keypad_type = keypad_type;
2361
2362 keypad.enabled = (selected_keypad_type > 0);
2363
2364 if (lcd_enabled != NOT_SET)
2365 selected_lcd_type = lcd_enabled;
2366 if (lcd_type != NOT_SET)
2367 selected_lcd_type = lcd_type;
2368
2369 lcd.enabled = (selected_lcd_type > 0);
2370
2371 if (lcd.enabled) {
2372 /*
2373 * Init lcd struct with load-time values to preserve exact
2374 * current functionality (at least for now).
2375 */
2376 lcd.height = lcd_height;
2377 lcd.width = lcd_width;
2378 lcd.bwidth = lcd_bwidth;
2379 lcd.hwidth = lcd_hwidth;
2380 lcd.charset = lcd_charset;
2381 lcd.proto = lcd_proto;
2382 lcd.pins.e = lcd_e_pin;
2383 lcd.pins.rs = lcd_rs_pin;
2384 lcd.pins.rw = lcd_rw_pin;
2385 lcd.pins.cl = lcd_cl_pin;
2386 lcd.pins.da = lcd_da_pin;
2387 lcd.pins.bl = lcd_bl_pin;
2388
2389 /* Leave it for now, just in case */
2390 lcd.esc_seq.len = -1;
2391 }
2392
2393 switch (selected_keypad_type) {
2394 case KEYPAD_TYPE_OLD:
2395 keypad_profile = old_keypad_profile;
2396 break;
2397 case KEYPAD_TYPE_NEW:
2398 keypad_profile = new_keypad_profile;
2399 break;
2400 case KEYPAD_TYPE_NEXCOM:
2401 keypad_profile = nexcom_keypad_profile;
2402 break;
2403 default:
2404 keypad_profile = NULL;
2405 break;
2406 }
2407
2408 if (!lcd.enabled && !keypad.enabled) {
2409 /* no device enabled, let's exit */
2410 pr_err("driver version " PANEL_VERSION " disabled.\n");
2411 return -ENODEV;
2412 }
2413
2414 err = parport_register_driver(&panel_driver);
2415 if (err) {
2416 pr_err("could not register with parport. Aborting.\n");
2417 return err;
2418 }
2419
2420 if (pprt)
2421 pr_info("driver version " PANEL_VERSION
2422 " registered on parport%d (io=0x%lx).\n", parport,
2423 pprt->port->base);
2424 else
2425 pr_info("driver version " PANEL_VERSION
2426 " not yet registered\n");
2427 return 0;
2428}
2429
2430static void __exit panel_cleanup_module(void)
2431{
2432 parport_unregister_driver(&panel_driver);
2433}
2434
2435module_init(panel_init_module);
2436module_exit(panel_cleanup_module);
2437MODULE_AUTHOR("Willy Tarreau");
2438MODULE_LICENSE("GPL");
2439
2440/*
2441 * Local variables:
2442 * c-indent-level: 4
2443 * tab-width: 8
2444 * End:
2445 */