diff options
Diffstat (limited to 'drivers/char/mmtimer.c')
-rw-r--r-- | drivers/char/mmtimer.c | 858 |
1 files changed, 0 insertions, 858 deletions
diff --git a/drivers/char/mmtimer.c b/drivers/char/mmtimer.c deleted file mode 100644 index 0e7fcb04f01e..000000000000 --- a/drivers/char/mmtimer.c +++ /dev/null | |||
@@ -1,858 +0,0 @@ | |||
1 | /* | ||
2 | * Timer device implementation for SGI SN platforms. | ||
3 | * | ||
4 | * This file is subject to the terms and conditions of the GNU General Public | ||
5 | * License. See the file "COPYING" in the main directory of this archive | ||
6 | * for more details. | ||
7 | * | ||
8 | * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved. | ||
9 | * | ||
10 | * This driver exports an API that should be supportable by any HPET or IA-PC | ||
11 | * multimedia timer. The code below is currently specific to the SGI Altix | ||
12 | * SHub RTC, however. | ||
13 | * | ||
14 | * 11/01/01 - jbarnes - initial revision | ||
15 | * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion | ||
16 | * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE | ||
17 | * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt | ||
18 | * support via the posix timer interface | ||
19 | */ | ||
20 | |||
21 | #include <linux/types.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/ioctl.h> | ||
24 | #include <linux/module.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <linux/errno.h> | ||
27 | #include <linux/mm.h> | ||
28 | #include <linux/fs.h> | ||
29 | #include <linux/mmtimer.h> | ||
30 | #include <linux/miscdevice.h> | ||
31 | #include <linux/posix-timers.h> | ||
32 | #include <linux/interrupt.h> | ||
33 | #include <linux/time.h> | ||
34 | #include <linux/math64.h> | ||
35 | #include <linux/mutex.h> | ||
36 | #include <linux/slab.h> | ||
37 | |||
38 | #include <linux/uaccess.h> | ||
39 | #include <asm/sn/addrs.h> | ||
40 | #include <asm/sn/intr.h> | ||
41 | #include <asm/sn/shub_mmr.h> | ||
42 | #include <asm/sn/nodepda.h> | ||
43 | #include <asm/sn/shubio.h> | ||
44 | |||
45 | MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>"); | ||
46 | MODULE_DESCRIPTION("SGI Altix RTC Timer"); | ||
47 | MODULE_LICENSE("GPL"); | ||
48 | |||
49 | /* name of the device, usually in /dev */ | ||
50 | #define MMTIMER_NAME "mmtimer" | ||
51 | #define MMTIMER_DESC "SGI Altix RTC Timer" | ||
52 | #define MMTIMER_VERSION "2.1" | ||
53 | |||
54 | #define RTC_BITS 55 /* 55 bits for this implementation */ | ||
55 | |||
56 | static struct k_clock sgi_clock; | ||
57 | |||
58 | extern unsigned long sn_rtc_cycles_per_second; | ||
59 | |||
60 | #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC)) | ||
61 | |||
62 | #define rtc_time() (*RTC_COUNTER_ADDR) | ||
63 | |||
64 | static DEFINE_MUTEX(mmtimer_mutex); | ||
65 | static long mmtimer_ioctl(struct file *file, unsigned int cmd, | ||
66 | unsigned long arg); | ||
67 | static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma); | ||
68 | |||
69 | /* | ||
70 | * Period in femtoseconds (10^-15 s) | ||
71 | */ | ||
72 | static unsigned long mmtimer_femtoperiod = 0; | ||
73 | |||
74 | static const struct file_operations mmtimer_fops = { | ||
75 | .owner = THIS_MODULE, | ||
76 | .mmap = mmtimer_mmap, | ||
77 | .unlocked_ioctl = mmtimer_ioctl, | ||
78 | .llseek = noop_llseek, | ||
79 | }; | ||
80 | |||
81 | /* | ||
82 | * We only have comparison registers RTC1-4 currently available per | ||
83 | * node. RTC0 is used by SAL. | ||
84 | */ | ||
85 | /* Check for an RTC interrupt pending */ | ||
86 | static int mmtimer_int_pending(int comparator) | ||
87 | { | ||
88 | if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) & | ||
89 | SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator) | ||
90 | return 1; | ||
91 | else | ||
92 | return 0; | ||
93 | } | ||
94 | |||
95 | /* Clear the RTC interrupt pending bit */ | ||
96 | static void mmtimer_clr_int_pending(int comparator) | ||
97 | { | ||
98 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), | ||
99 | SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator); | ||
100 | } | ||
101 | |||
102 | /* Setup timer on comparator RTC1 */ | ||
103 | static void mmtimer_setup_int_0(int cpu, u64 expires) | ||
104 | { | ||
105 | u64 val; | ||
106 | |||
107 | /* Disable interrupt */ | ||
108 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL); | ||
109 | |||
110 | /* Initialize comparator value */ | ||
111 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L); | ||
112 | |||
113 | /* Clear pending bit */ | ||
114 | mmtimer_clr_int_pending(0); | ||
115 | |||
116 | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) | | ||
117 | ((u64)cpu_physical_id(cpu) << | ||
118 | SH_RTC1_INT_CONFIG_PID_SHFT); | ||
119 | |||
120 | /* Set configuration */ | ||
121 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val); | ||
122 | |||
123 | /* Enable RTC interrupts */ | ||
124 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL); | ||
125 | |||
126 | /* Initialize comparator value */ | ||
127 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires); | ||
128 | |||
129 | |||
130 | } | ||
131 | |||
132 | /* Setup timer on comparator RTC2 */ | ||
133 | static void mmtimer_setup_int_1(int cpu, u64 expires) | ||
134 | { | ||
135 | u64 val; | ||
136 | |||
137 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL); | ||
138 | |||
139 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L); | ||
140 | |||
141 | mmtimer_clr_int_pending(1); | ||
142 | |||
143 | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) | | ||
144 | ((u64)cpu_physical_id(cpu) << | ||
145 | SH_RTC2_INT_CONFIG_PID_SHFT); | ||
146 | |||
147 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val); | ||
148 | |||
149 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL); | ||
150 | |||
151 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires); | ||
152 | } | ||
153 | |||
154 | /* Setup timer on comparator RTC3 */ | ||
155 | static void mmtimer_setup_int_2(int cpu, u64 expires) | ||
156 | { | ||
157 | u64 val; | ||
158 | |||
159 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL); | ||
160 | |||
161 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L); | ||
162 | |||
163 | mmtimer_clr_int_pending(2); | ||
164 | |||
165 | val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) | | ||
166 | ((u64)cpu_physical_id(cpu) << | ||
167 | SH_RTC3_INT_CONFIG_PID_SHFT); | ||
168 | |||
169 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val); | ||
170 | |||
171 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL); | ||
172 | |||
173 | HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires); | ||
174 | } | ||
175 | |||
176 | /* | ||
177 | * This function must be called with interrupts disabled and preemption off | ||
178 | * in order to insure that the setup succeeds in a deterministic time frame. | ||
179 | * It will check if the interrupt setup succeeded. | ||
180 | */ | ||
181 | static int mmtimer_setup(int cpu, int comparator, unsigned long expires, | ||
182 | u64 *set_completion_time) | ||
183 | { | ||
184 | switch (comparator) { | ||
185 | case 0: | ||
186 | mmtimer_setup_int_0(cpu, expires); | ||
187 | break; | ||
188 | case 1: | ||
189 | mmtimer_setup_int_1(cpu, expires); | ||
190 | break; | ||
191 | case 2: | ||
192 | mmtimer_setup_int_2(cpu, expires); | ||
193 | break; | ||
194 | } | ||
195 | /* We might've missed our expiration time */ | ||
196 | *set_completion_time = rtc_time(); | ||
197 | if (*set_completion_time <= expires) | ||
198 | return 1; | ||
199 | |||
200 | /* | ||
201 | * If an interrupt is already pending then its okay | ||
202 | * if not then we failed | ||
203 | */ | ||
204 | return mmtimer_int_pending(comparator); | ||
205 | } | ||
206 | |||
207 | static int mmtimer_disable_int(long nasid, int comparator) | ||
208 | { | ||
209 | switch (comparator) { | ||
210 | case 0: | ||
211 | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), | ||
212 | 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL); | ||
213 | break; | ||
214 | case 1: | ||
215 | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), | ||
216 | 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL); | ||
217 | break; | ||
218 | case 2: | ||
219 | nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), | ||
220 | 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL); | ||
221 | break; | ||
222 | default: | ||
223 | return -EFAULT; | ||
224 | } | ||
225 | return 0; | ||
226 | } | ||
227 | |||
228 | #define COMPARATOR 1 /* The comparator to use */ | ||
229 | |||
230 | #define TIMER_OFF 0xbadcabLL /* Timer is not setup */ | ||
231 | #define TIMER_SET 0 /* Comparator is set for this timer */ | ||
232 | |||
233 | #define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40 | ||
234 | |||
235 | /* There is one of these for each timer */ | ||
236 | struct mmtimer { | ||
237 | struct rb_node list; | ||
238 | struct k_itimer *timer; | ||
239 | int cpu; | ||
240 | }; | ||
241 | |||
242 | struct mmtimer_node { | ||
243 | spinlock_t lock ____cacheline_aligned; | ||
244 | struct rb_root timer_head; | ||
245 | struct rb_node *next; | ||
246 | struct tasklet_struct tasklet; | ||
247 | }; | ||
248 | static struct mmtimer_node *timers; | ||
249 | |||
250 | static unsigned mmtimer_interval_retry_increment = | ||
251 | MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT; | ||
252 | module_param(mmtimer_interval_retry_increment, uint, 0644); | ||
253 | MODULE_PARM_DESC(mmtimer_interval_retry_increment, | ||
254 | "RTC ticks to add to expiration on interval retry (default 40)"); | ||
255 | |||
256 | /* | ||
257 | * Add a new mmtimer struct to the node's mmtimer list. | ||
258 | * This function assumes the struct mmtimer_node is locked. | ||
259 | */ | ||
260 | static void mmtimer_add_list(struct mmtimer *n) | ||
261 | { | ||
262 | int nodeid = n->timer->it.mmtimer.node; | ||
263 | unsigned long expires = n->timer->it.mmtimer.expires; | ||
264 | struct rb_node **link = &timers[nodeid].timer_head.rb_node; | ||
265 | struct rb_node *parent = NULL; | ||
266 | struct mmtimer *x; | ||
267 | |||
268 | /* | ||
269 | * Find the right place in the rbtree: | ||
270 | */ | ||
271 | while (*link) { | ||
272 | parent = *link; | ||
273 | x = rb_entry(parent, struct mmtimer, list); | ||
274 | |||
275 | if (expires < x->timer->it.mmtimer.expires) | ||
276 | link = &(*link)->rb_left; | ||
277 | else | ||
278 | link = &(*link)->rb_right; | ||
279 | } | ||
280 | |||
281 | /* | ||
282 | * Insert the timer to the rbtree and check whether it | ||
283 | * replaces the first pending timer | ||
284 | */ | ||
285 | rb_link_node(&n->list, parent, link); | ||
286 | rb_insert_color(&n->list, &timers[nodeid].timer_head); | ||
287 | |||
288 | if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next, | ||
289 | struct mmtimer, list)->timer->it.mmtimer.expires) | ||
290 | timers[nodeid].next = &n->list; | ||
291 | } | ||
292 | |||
293 | /* | ||
294 | * Set the comparator for the next timer. | ||
295 | * This function assumes the struct mmtimer_node is locked. | ||
296 | */ | ||
297 | static void mmtimer_set_next_timer(int nodeid) | ||
298 | { | ||
299 | struct mmtimer_node *n = &timers[nodeid]; | ||
300 | struct mmtimer *x; | ||
301 | struct k_itimer *t; | ||
302 | u64 expires, exp, set_completion_time; | ||
303 | int i; | ||
304 | |||
305 | restart: | ||
306 | if (n->next == NULL) | ||
307 | return; | ||
308 | |||
309 | x = rb_entry(n->next, struct mmtimer, list); | ||
310 | t = x->timer; | ||
311 | if (!t->it.mmtimer.incr) { | ||
312 | /* Not an interval timer */ | ||
313 | if (!mmtimer_setup(x->cpu, COMPARATOR, | ||
314 | t->it.mmtimer.expires, | ||
315 | &set_completion_time)) { | ||
316 | /* Late setup, fire now */ | ||
317 | tasklet_schedule(&n->tasklet); | ||
318 | } | ||
319 | return; | ||
320 | } | ||
321 | |||
322 | /* Interval timer */ | ||
323 | i = 0; | ||
324 | expires = exp = t->it.mmtimer.expires; | ||
325 | while (!mmtimer_setup(x->cpu, COMPARATOR, expires, | ||
326 | &set_completion_time)) { | ||
327 | int to; | ||
328 | |||
329 | i++; | ||
330 | expires = set_completion_time + | ||
331 | mmtimer_interval_retry_increment + (1 << i); | ||
332 | /* Calculate overruns as we go. */ | ||
333 | to = ((u64)(expires - exp) / t->it.mmtimer.incr); | ||
334 | if (to) { | ||
335 | t->it_overrun += to; | ||
336 | t->it.mmtimer.expires += t->it.mmtimer.incr * to; | ||
337 | exp = t->it.mmtimer.expires; | ||
338 | } | ||
339 | if (i > 20) { | ||
340 | printk(KERN_ALERT "mmtimer: cannot reschedule timer\n"); | ||
341 | t->it.mmtimer.clock = TIMER_OFF; | ||
342 | n->next = rb_next(&x->list); | ||
343 | rb_erase(&x->list, &n->timer_head); | ||
344 | kfree(x); | ||
345 | goto restart; | ||
346 | } | ||
347 | } | ||
348 | } | ||
349 | |||
350 | /** | ||
351 | * mmtimer_ioctl - ioctl interface for /dev/mmtimer | ||
352 | * @file: file structure for the device | ||
353 | * @cmd: command to execute | ||
354 | * @arg: optional argument to command | ||
355 | * | ||
356 | * Executes the command specified by @cmd. Returns 0 for success, < 0 for | ||
357 | * failure. | ||
358 | * | ||
359 | * Valid commands: | ||
360 | * | ||
361 | * %MMTIMER_GETOFFSET - Should return the offset (relative to the start | ||
362 | * of the page where the registers are mapped) for the counter in question. | ||
363 | * | ||
364 | * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15) | ||
365 | * seconds | ||
366 | * | ||
367 | * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address | ||
368 | * specified by @arg | ||
369 | * | ||
370 | * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter | ||
371 | * | ||
372 | * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace | ||
373 | * | ||
374 | * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it | ||
375 | * in the address specified by @arg. | ||
376 | */ | ||
377 | static long mmtimer_ioctl(struct file *file, unsigned int cmd, | ||
378 | unsigned long arg) | ||
379 | { | ||
380 | int ret = 0; | ||
381 | |||
382 | mutex_lock(&mmtimer_mutex); | ||
383 | |||
384 | switch (cmd) { | ||
385 | case MMTIMER_GETOFFSET: /* offset of the counter */ | ||
386 | /* | ||
387 | * SN RTC registers are on their own 64k page | ||
388 | */ | ||
389 | if(PAGE_SIZE <= (1 << 16)) | ||
390 | ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8; | ||
391 | else | ||
392 | ret = -ENOSYS; | ||
393 | break; | ||
394 | |||
395 | case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */ | ||
396 | if(copy_to_user((unsigned long __user *)arg, | ||
397 | &mmtimer_femtoperiod, sizeof(unsigned long))) | ||
398 | ret = -EFAULT; | ||
399 | break; | ||
400 | |||
401 | case MMTIMER_GETFREQ: /* frequency in Hz */ | ||
402 | if(copy_to_user((unsigned long __user *)arg, | ||
403 | &sn_rtc_cycles_per_second, | ||
404 | sizeof(unsigned long))) | ||
405 | ret = -EFAULT; | ||
406 | break; | ||
407 | |||
408 | case MMTIMER_GETBITS: /* number of bits in the clock */ | ||
409 | ret = RTC_BITS; | ||
410 | break; | ||
411 | |||
412 | case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */ | ||
413 | ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0; | ||
414 | break; | ||
415 | |||
416 | case MMTIMER_GETCOUNTER: | ||
417 | if(copy_to_user((unsigned long __user *)arg, | ||
418 | RTC_COUNTER_ADDR, sizeof(unsigned long))) | ||
419 | ret = -EFAULT; | ||
420 | break; | ||
421 | default: | ||
422 | ret = -ENOTTY; | ||
423 | break; | ||
424 | } | ||
425 | mutex_unlock(&mmtimer_mutex); | ||
426 | return ret; | ||
427 | } | ||
428 | |||
429 | /** | ||
430 | * mmtimer_mmap - maps the clock's registers into userspace | ||
431 | * @file: file structure for the device | ||
432 | * @vma: VMA to map the registers into | ||
433 | * | ||
434 | * Calls remap_pfn_range() to map the clock's registers into | ||
435 | * the calling process' address space. | ||
436 | */ | ||
437 | static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma) | ||
438 | { | ||
439 | unsigned long mmtimer_addr; | ||
440 | |||
441 | if (vma->vm_end - vma->vm_start != PAGE_SIZE) | ||
442 | return -EINVAL; | ||
443 | |||
444 | if (vma->vm_flags & VM_WRITE) | ||
445 | return -EPERM; | ||
446 | |||
447 | if (PAGE_SIZE > (1 << 16)) | ||
448 | return -ENOSYS; | ||
449 | |||
450 | vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); | ||
451 | |||
452 | mmtimer_addr = __pa(RTC_COUNTER_ADDR); | ||
453 | mmtimer_addr &= ~(PAGE_SIZE - 1); | ||
454 | mmtimer_addr &= 0xfffffffffffffffUL; | ||
455 | |||
456 | if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT, | ||
457 | PAGE_SIZE, vma->vm_page_prot)) { | ||
458 | printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n"); | ||
459 | return -EAGAIN; | ||
460 | } | ||
461 | |||
462 | return 0; | ||
463 | } | ||
464 | |||
465 | static struct miscdevice mmtimer_miscdev = { | ||
466 | .minor = SGI_MMTIMER, | ||
467 | .name = MMTIMER_NAME, | ||
468 | .fops = &mmtimer_fops | ||
469 | }; | ||
470 | |||
471 | static struct timespec sgi_clock_offset; | ||
472 | static int sgi_clock_period; | ||
473 | |||
474 | /* | ||
475 | * Posix Timer Interface | ||
476 | */ | ||
477 | |||
478 | static struct timespec sgi_clock_offset; | ||
479 | static int sgi_clock_period; | ||
480 | |||
481 | static int sgi_clock_get(clockid_t clockid, struct timespec64 *tp) | ||
482 | { | ||
483 | u64 nsec; | ||
484 | |||
485 | nsec = rtc_time() * sgi_clock_period | ||
486 | + sgi_clock_offset.tv_nsec; | ||
487 | *tp = ns_to_timespec64(nsec); | ||
488 | tp->tv_sec += sgi_clock_offset.tv_sec; | ||
489 | return 0; | ||
490 | }; | ||
491 | |||
492 | static int sgi_clock_set(const clockid_t clockid, const struct timespec64 *tp) | ||
493 | { | ||
494 | |||
495 | u64 nsec; | ||
496 | u32 rem; | ||
497 | |||
498 | nsec = rtc_time() * sgi_clock_period; | ||
499 | |||
500 | sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem); | ||
501 | |||
502 | if (rem <= tp->tv_nsec) | ||
503 | sgi_clock_offset.tv_nsec = tp->tv_sec - rem; | ||
504 | else { | ||
505 | sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem; | ||
506 | sgi_clock_offset.tv_sec--; | ||
507 | } | ||
508 | return 0; | ||
509 | } | ||
510 | |||
511 | /** | ||
512 | * mmtimer_interrupt - timer interrupt handler | ||
513 | * @irq: irq received | ||
514 | * @dev_id: device the irq came from | ||
515 | * | ||
516 | * Called when one of the comarators matches the counter, This | ||
517 | * routine will send signals to processes that have requested | ||
518 | * them. | ||
519 | * | ||
520 | * This interrupt is run in an interrupt context | ||
521 | * by the SHUB. It is therefore safe to locally access SHub | ||
522 | * registers. | ||
523 | */ | ||
524 | static irqreturn_t | ||
525 | mmtimer_interrupt(int irq, void *dev_id) | ||
526 | { | ||
527 | unsigned long expires = 0; | ||
528 | int result = IRQ_NONE; | ||
529 | unsigned indx = cpu_to_node(smp_processor_id()); | ||
530 | struct mmtimer *base; | ||
531 | |||
532 | spin_lock(&timers[indx].lock); | ||
533 | base = rb_entry(timers[indx].next, struct mmtimer, list); | ||
534 | if (base == NULL) { | ||
535 | spin_unlock(&timers[indx].lock); | ||
536 | return result; | ||
537 | } | ||
538 | |||
539 | if (base->cpu == smp_processor_id()) { | ||
540 | if (base->timer) | ||
541 | expires = base->timer->it.mmtimer.expires; | ||
542 | /* expires test won't work with shared irqs */ | ||
543 | if ((mmtimer_int_pending(COMPARATOR) > 0) || | ||
544 | (expires && (expires <= rtc_time()))) { | ||
545 | mmtimer_clr_int_pending(COMPARATOR); | ||
546 | tasklet_schedule(&timers[indx].tasklet); | ||
547 | result = IRQ_HANDLED; | ||
548 | } | ||
549 | } | ||
550 | spin_unlock(&timers[indx].lock); | ||
551 | return result; | ||
552 | } | ||
553 | |||
554 | static void mmtimer_tasklet(unsigned long data) | ||
555 | { | ||
556 | int nodeid = data; | ||
557 | struct mmtimer_node *mn = &timers[nodeid]; | ||
558 | struct mmtimer *x; | ||
559 | struct k_itimer *t; | ||
560 | unsigned long flags; | ||
561 | |||
562 | /* Send signal and deal with periodic signals */ | ||
563 | spin_lock_irqsave(&mn->lock, flags); | ||
564 | if (!mn->next) | ||
565 | goto out; | ||
566 | |||
567 | x = rb_entry(mn->next, struct mmtimer, list); | ||
568 | t = x->timer; | ||
569 | |||
570 | if (t->it.mmtimer.clock == TIMER_OFF) | ||
571 | goto out; | ||
572 | |||
573 | t->it_overrun = 0; | ||
574 | |||
575 | mn->next = rb_next(&x->list); | ||
576 | rb_erase(&x->list, &mn->timer_head); | ||
577 | |||
578 | if (posix_timer_event(t, 0) != 0) | ||
579 | t->it_overrun++; | ||
580 | |||
581 | if(t->it.mmtimer.incr) { | ||
582 | t->it.mmtimer.expires += t->it.mmtimer.incr; | ||
583 | mmtimer_add_list(x); | ||
584 | } else { | ||
585 | /* Ensure we don't false trigger in mmtimer_interrupt */ | ||
586 | t->it.mmtimer.clock = TIMER_OFF; | ||
587 | t->it.mmtimer.expires = 0; | ||
588 | kfree(x); | ||
589 | } | ||
590 | /* Set comparator for next timer, if there is one */ | ||
591 | mmtimer_set_next_timer(nodeid); | ||
592 | |||
593 | t->it_overrun_last = t->it_overrun; | ||
594 | out: | ||
595 | spin_unlock_irqrestore(&mn->lock, flags); | ||
596 | } | ||
597 | |||
598 | static int sgi_timer_create(struct k_itimer *timer) | ||
599 | { | ||
600 | /* Insure that a newly created timer is off */ | ||
601 | timer->it.mmtimer.clock = TIMER_OFF; | ||
602 | return 0; | ||
603 | } | ||
604 | |||
605 | /* This does not really delete a timer. It just insures | ||
606 | * that the timer is not active | ||
607 | * | ||
608 | * Assumption: it_lock is already held with irq's disabled | ||
609 | */ | ||
610 | static int sgi_timer_del(struct k_itimer *timr) | ||
611 | { | ||
612 | cnodeid_t nodeid = timr->it.mmtimer.node; | ||
613 | unsigned long irqflags; | ||
614 | |||
615 | spin_lock_irqsave(&timers[nodeid].lock, irqflags); | ||
616 | if (timr->it.mmtimer.clock != TIMER_OFF) { | ||
617 | unsigned long expires = timr->it.mmtimer.expires; | ||
618 | struct rb_node *n = timers[nodeid].timer_head.rb_node; | ||
619 | struct mmtimer *uninitialized_var(t); | ||
620 | int r = 0; | ||
621 | |||
622 | timr->it.mmtimer.clock = TIMER_OFF; | ||
623 | timr->it.mmtimer.expires = 0; | ||
624 | |||
625 | while (n) { | ||
626 | t = rb_entry(n, struct mmtimer, list); | ||
627 | if (t->timer == timr) | ||
628 | break; | ||
629 | |||
630 | if (expires < t->timer->it.mmtimer.expires) | ||
631 | n = n->rb_left; | ||
632 | else | ||
633 | n = n->rb_right; | ||
634 | } | ||
635 | |||
636 | if (!n) { | ||
637 | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); | ||
638 | return 0; | ||
639 | } | ||
640 | |||
641 | if (timers[nodeid].next == n) { | ||
642 | timers[nodeid].next = rb_next(n); | ||
643 | r = 1; | ||
644 | } | ||
645 | |||
646 | rb_erase(n, &timers[nodeid].timer_head); | ||
647 | kfree(t); | ||
648 | |||
649 | if (r) { | ||
650 | mmtimer_disable_int(cnodeid_to_nasid(nodeid), | ||
651 | COMPARATOR); | ||
652 | mmtimer_set_next_timer(nodeid); | ||
653 | } | ||
654 | } | ||
655 | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); | ||
656 | return 0; | ||
657 | } | ||
658 | |||
659 | /* Assumption: it_lock is already held with irq's disabled */ | ||
660 | static void sgi_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) | ||
661 | { | ||
662 | |||
663 | if (timr->it.mmtimer.clock == TIMER_OFF) { | ||
664 | cur_setting->it_interval.tv_nsec = 0; | ||
665 | cur_setting->it_interval.tv_sec = 0; | ||
666 | cur_setting->it_value.tv_nsec = 0; | ||
667 | cur_setting->it_value.tv_sec =0; | ||
668 | return; | ||
669 | } | ||
670 | |||
671 | cur_setting->it_interval = ns_to_timespec64(timr->it.mmtimer.incr * sgi_clock_period); | ||
672 | cur_setting->it_value = ns_to_timespec64((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period); | ||
673 | } | ||
674 | |||
675 | |||
676 | static int sgi_timer_set(struct k_itimer *timr, int flags, | ||
677 | struct itimerspec64 *new_setting, | ||
678 | struct itimerspec64 *old_setting) | ||
679 | { | ||
680 | unsigned long when, period, irqflags; | ||
681 | int err = 0; | ||
682 | cnodeid_t nodeid; | ||
683 | struct mmtimer *base; | ||
684 | struct rb_node *n; | ||
685 | |||
686 | if (old_setting) | ||
687 | sgi_timer_get(timr, old_setting); | ||
688 | |||
689 | sgi_timer_del(timr); | ||
690 | when = timespec64_to_ns(&new_setting->it_value); | ||
691 | period = timespec64_to_ns(&new_setting->it_interval); | ||
692 | |||
693 | if (when == 0) | ||
694 | /* Clear timer */ | ||
695 | return 0; | ||
696 | |||
697 | base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL); | ||
698 | if (base == NULL) | ||
699 | return -ENOMEM; | ||
700 | |||
701 | if (flags & TIMER_ABSTIME) { | ||
702 | struct timespec64 n; | ||
703 | unsigned long now; | ||
704 | |||
705 | getnstimeofday64(&n); | ||
706 | now = timespec64_to_ns(&n); | ||
707 | if (when > now) | ||
708 | when -= now; | ||
709 | else | ||
710 | /* Fire the timer immediately */ | ||
711 | when = 0; | ||
712 | } | ||
713 | |||
714 | /* | ||
715 | * Convert to sgi clock period. Need to keep rtc_time() as near as possible | ||
716 | * to getnstimeofday() in order to be as faithful as possible to the time | ||
717 | * specified. | ||
718 | */ | ||
719 | when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time(); | ||
720 | period = (period + sgi_clock_period - 1) / sgi_clock_period; | ||
721 | |||
722 | /* | ||
723 | * We are allocating a local SHub comparator. If we would be moved to another | ||
724 | * cpu then another SHub may be local to us. Prohibit that by switching off | ||
725 | * preemption. | ||
726 | */ | ||
727 | preempt_disable(); | ||
728 | |||
729 | nodeid = cpu_to_node(smp_processor_id()); | ||
730 | |||
731 | /* Lock the node timer structure */ | ||
732 | spin_lock_irqsave(&timers[nodeid].lock, irqflags); | ||
733 | |||
734 | base->timer = timr; | ||
735 | base->cpu = smp_processor_id(); | ||
736 | |||
737 | timr->it.mmtimer.clock = TIMER_SET; | ||
738 | timr->it.mmtimer.node = nodeid; | ||
739 | timr->it.mmtimer.incr = period; | ||
740 | timr->it.mmtimer.expires = when; | ||
741 | |||
742 | n = timers[nodeid].next; | ||
743 | |||
744 | /* Add the new struct mmtimer to node's timer list */ | ||
745 | mmtimer_add_list(base); | ||
746 | |||
747 | if (timers[nodeid].next == n) { | ||
748 | /* No need to reprogram comparator for now */ | ||
749 | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); | ||
750 | preempt_enable(); | ||
751 | return err; | ||
752 | } | ||
753 | |||
754 | /* We need to reprogram the comparator */ | ||
755 | if (n) | ||
756 | mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR); | ||
757 | |||
758 | mmtimer_set_next_timer(nodeid); | ||
759 | |||
760 | /* Unlock the node timer structure */ | ||
761 | spin_unlock_irqrestore(&timers[nodeid].lock, irqflags); | ||
762 | |||
763 | preempt_enable(); | ||
764 | |||
765 | return err; | ||
766 | } | ||
767 | |||
768 | static int sgi_clock_getres(const clockid_t which_clock, struct timespec64 *tp) | ||
769 | { | ||
770 | tp->tv_sec = 0; | ||
771 | tp->tv_nsec = sgi_clock_period; | ||
772 | return 0; | ||
773 | } | ||
774 | |||
775 | static struct k_clock sgi_clock = { | ||
776 | .clock_set = sgi_clock_set, | ||
777 | .clock_get = sgi_clock_get, | ||
778 | .clock_getres = sgi_clock_getres, | ||
779 | .timer_create = sgi_timer_create, | ||
780 | .timer_set = sgi_timer_set, | ||
781 | .timer_del = sgi_timer_del, | ||
782 | .timer_get = sgi_timer_get | ||
783 | }; | ||
784 | |||
785 | /** | ||
786 | * mmtimer_init - device initialization routine | ||
787 | * | ||
788 | * Does initial setup for the mmtimer device. | ||
789 | */ | ||
790 | static int __init mmtimer_init(void) | ||
791 | { | ||
792 | cnodeid_t node, maxn = -1; | ||
793 | |||
794 | if (!ia64_platform_is("sn2")) | ||
795 | return 0; | ||
796 | |||
797 | /* | ||
798 | * Sanity check the cycles/sec variable | ||
799 | */ | ||
800 | if (sn_rtc_cycles_per_second < 100000) { | ||
801 | printk(KERN_ERR "%s: unable to determine clock frequency\n", | ||
802 | MMTIMER_NAME); | ||
803 | goto out1; | ||
804 | } | ||
805 | |||
806 | mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second / | ||
807 | 2) / sn_rtc_cycles_per_second; | ||
808 | |||
809 | if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) { | ||
810 | printk(KERN_WARNING "%s: unable to allocate interrupt.", | ||
811 | MMTIMER_NAME); | ||
812 | goto out1; | ||
813 | } | ||
814 | |||
815 | if (misc_register(&mmtimer_miscdev)) { | ||
816 | printk(KERN_ERR "%s: failed to register device\n", | ||
817 | MMTIMER_NAME); | ||
818 | goto out2; | ||
819 | } | ||
820 | |||
821 | /* Get max numbered node, calculate slots needed */ | ||
822 | for_each_online_node(node) { | ||
823 | maxn = node; | ||
824 | } | ||
825 | maxn++; | ||
826 | |||
827 | /* Allocate list of node ptrs to mmtimer_t's */ | ||
828 | timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL); | ||
829 | if (!timers) { | ||
830 | printk(KERN_ERR "%s: failed to allocate memory for device\n", | ||
831 | MMTIMER_NAME); | ||
832 | goto out3; | ||
833 | } | ||
834 | |||
835 | /* Initialize struct mmtimer's for each online node */ | ||
836 | for_each_online_node(node) { | ||
837 | spin_lock_init(&timers[node].lock); | ||
838 | tasklet_init(&timers[node].tasklet, mmtimer_tasklet, | ||
839 | (unsigned long) node); | ||
840 | } | ||
841 | |||
842 | sgi_clock_period = NSEC_PER_SEC / sn_rtc_cycles_per_second; | ||
843 | posix_timers_register_clock(CLOCK_SGI_CYCLE, &sgi_clock); | ||
844 | |||
845 | printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION, | ||
846 | sn_rtc_cycles_per_second/(unsigned long)1E6); | ||
847 | |||
848 | return 0; | ||
849 | |||
850 | out3: | ||
851 | misc_deregister(&mmtimer_miscdev); | ||
852 | out2: | ||
853 | free_irq(SGI_MMTIMER_VECTOR, NULL); | ||
854 | out1: | ||
855 | return -1; | ||
856 | } | ||
857 | |||
858 | module_init(mmtimer_init); | ||