diff options
author | Vincent Guittot <vincent.guittot@linaro.org> | 2018-06-28 11:45:04 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2018-07-15 17:51:20 -0400 |
commit | c079629862b20c101e8336362a8b042ec7d942fe (patch) | |
tree | be0246940ddfb4c82c01af1332e2aa4fd3bb8e74 /kernel/sched/pelt.c | |
parent | 8fe5c5a937d0f4e84221631833a2718afde52285 (diff) |
sched/pelt: Move PELT related code in a dedicated file
We want to track rt_rq's utilization as a part of the estimation of the
whole rq's utilization. This is necessary because rt tasks can steal
utilization to cfs tasks and make them lighter than they are.
As we want to use the same load tracking mecanism for both and prevent
useless dependency between cfs and rt code, PELT code is moved in a
dedicated file.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: claudio@evidence.eu.com
Cc: daniel.lezcano@linaro.org
Cc: dietmar.eggemann@arm.com
Cc: joel@joelfernandes.org
Cc: juri.lelli@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: patrick.bellasi@arm.com
Cc: quentin.perret@arm.com
Cc: rjw@rjwysocki.net
Cc: valentin.schneider@arm.com
Cc: viresh.kumar@linaro.org
Link: http://lkml.kernel.org/r/1530200714-4504-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel/sched/pelt.c')
-rw-r--r-- | kernel/sched/pelt.c | 311 |
1 files changed, 311 insertions, 0 deletions
diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c new file mode 100644 index 000000000000..e6ecbb2b8698 --- /dev/null +++ b/kernel/sched/pelt.c | |||
@@ -0,0 +1,311 @@ | |||
1 | // SPDX-License-Identifier: GPL-2.0 | ||
2 | /* | ||
3 | * Per Entity Load Tracking | ||
4 | * | ||
5 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> | ||
6 | * | ||
7 | * Interactivity improvements by Mike Galbraith | ||
8 | * (C) 2007 Mike Galbraith <efault@gmx.de> | ||
9 | * | ||
10 | * Various enhancements by Dmitry Adamushko. | ||
11 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> | ||
12 | * | ||
13 | * Group scheduling enhancements by Srivatsa Vaddagiri | ||
14 | * Copyright IBM Corporation, 2007 | ||
15 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> | ||
16 | * | ||
17 | * Scaled math optimizations by Thomas Gleixner | ||
18 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> | ||
19 | * | ||
20 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra | ||
21 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra | ||
22 | * | ||
23 | * Move PELT related code from fair.c into this pelt.c file | ||
24 | * Author: Vincent Guittot <vincent.guittot@linaro.org> | ||
25 | */ | ||
26 | |||
27 | #include <linux/sched.h> | ||
28 | #include "sched.h" | ||
29 | #include "sched-pelt.h" | ||
30 | #include "pelt.h" | ||
31 | |||
32 | /* | ||
33 | * Approximate: | ||
34 | * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) | ||
35 | */ | ||
36 | static u64 decay_load(u64 val, u64 n) | ||
37 | { | ||
38 | unsigned int local_n; | ||
39 | |||
40 | if (unlikely(n > LOAD_AVG_PERIOD * 63)) | ||
41 | return 0; | ||
42 | |||
43 | /* after bounds checking we can collapse to 32-bit */ | ||
44 | local_n = n; | ||
45 | |||
46 | /* | ||
47 | * As y^PERIOD = 1/2, we can combine | ||
48 | * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) | ||
49 | * With a look-up table which covers y^n (n<PERIOD) | ||
50 | * | ||
51 | * To achieve constant time decay_load. | ||
52 | */ | ||
53 | if (unlikely(local_n >= LOAD_AVG_PERIOD)) { | ||
54 | val >>= local_n / LOAD_AVG_PERIOD; | ||
55 | local_n %= LOAD_AVG_PERIOD; | ||
56 | } | ||
57 | |||
58 | val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); | ||
59 | return val; | ||
60 | } | ||
61 | |||
62 | static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) | ||
63 | { | ||
64 | u32 c1, c2, c3 = d3; /* y^0 == 1 */ | ||
65 | |||
66 | /* | ||
67 | * c1 = d1 y^p | ||
68 | */ | ||
69 | c1 = decay_load((u64)d1, periods); | ||
70 | |||
71 | /* | ||
72 | * p-1 | ||
73 | * c2 = 1024 \Sum y^n | ||
74 | * n=1 | ||
75 | * | ||
76 | * inf inf | ||
77 | * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) | ||
78 | * n=0 n=p | ||
79 | */ | ||
80 | c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; | ||
81 | |||
82 | return c1 + c2 + c3; | ||
83 | } | ||
84 | |||
85 | #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) | ||
86 | |||
87 | /* | ||
88 | * Accumulate the three separate parts of the sum; d1 the remainder | ||
89 | * of the last (incomplete) period, d2 the span of full periods and d3 | ||
90 | * the remainder of the (incomplete) current period. | ||
91 | * | ||
92 | * d1 d2 d3 | ||
93 | * ^ ^ ^ | ||
94 | * | | | | ||
95 | * |<->|<----------------->|<--->| | ||
96 | * ... |---x---|------| ... |------|-----x (now) | ||
97 | * | ||
98 | * p-1 | ||
99 | * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 | ||
100 | * n=1 | ||
101 | * | ||
102 | * = u y^p + (Step 1) | ||
103 | * | ||
104 | * p-1 | ||
105 | * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) | ||
106 | * n=1 | ||
107 | */ | ||
108 | static __always_inline u32 | ||
109 | accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, | ||
110 | unsigned long load, unsigned long runnable, int running) | ||
111 | { | ||
112 | unsigned long scale_freq, scale_cpu; | ||
113 | u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ | ||
114 | u64 periods; | ||
115 | |||
116 | scale_freq = arch_scale_freq_capacity(cpu); | ||
117 | scale_cpu = arch_scale_cpu_capacity(NULL, cpu); | ||
118 | |||
119 | delta += sa->period_contrib; | ||
120 | periods = delta / 1024; /* A period is 1024us (~1ms) */ | ||
121 | |||
122 | /* | ||
123 | * Step 1: decay old *_sum if we crossed period boundaries. | ||
124 | */ | ||
125 | if (periods) { | ||
126 | sa->load_sum = decay_load(sa->load_sum, periods); | ||
127 | sa->runnable_load_sum = | ||
128 | decay_load(sa->runnable_load_sum, periods); | ||
129 | sa->util_sum = decay_load((u64)(sa->util_sum), periods); | ||
130 | |||
131 | /* | ||
132 | * Step 2 | ||
133 | */ | ||
134 | delta %= 1024; | ||
135 | contrib = __accumulate_pelt_segments(periods, | ||
136 | 1024 - sa->period_contrib, delta); | ||
137 | } | ||
138 | sa->period_contrib = delta; | ||
139 | |||
140 | contrib = cap_scale(contrib, scale_freq); | ||
141 | if (load) | ||
142 | sa->load_sum += load * contrib; | ||
143 | if (runnable) | ||
144 | sa->runnable_load_sum += runnable * contrib; | ||
145 | if (running) | ||
146 | sa->util_sum += contrib * scale_cpu; | ||
147 | |||
148 | return periods; | ||
149 | } | ||
150 | |||
151 | /* | ||
152 | * We can represent the historical contribution to runnable average as the | ||
153 | * coefficients of a geometric series. To do this we sub-divide our runnable | ||
154 | * history into segments of approximately 1ms (1024us); label the segment that | ||
155 | * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. | ||
156 | * | ||
157 | * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... | ||
158 | * p0 p1 p2 | ||
159 | * (now) (~1ms ago) (~2ms ago) | ||
160 | * | ||
161 | * Let u_i denote the fraction of p_i that the entity was runnable. | ||
162 | * | ||
163 | * We then designate the fractions u_i as our co-efficients, yielding the | ||
164 | * following representation of historical load: | ||
165 | * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... | ||
166 | * | ||
167 | * We choose y based on the with of a reasonably scheduling period, fixing: | ||
168 | * y^32 = 0.5 | ||
169 | * | ||
170 | * This means that the contribution to load ~32ms ago (u_32) will be weighted | ||
171 | * approximately half as much as the contribution to load within the last ms | ||
172 | * (u_0). | ||
173 | * | ||
174 | * When a period "rolls over" and we have new u_0`, multiplying the previous | ||
175 | * sum again by y is sufficient to update: | ||
176 | * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) | ||
177 | * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] | ||
178 | */ | ||
179 | static __always_inline int | ||
180 | ___update_load_sum(u64 now, int cpu, struct sched_avg *sa, | ||
181 | unsigned long load, unsigned long runnable, int running) | ||
182 | { | ||
183 | u64 delta; | ||
184 | |||
185 | delta = now - sa->last_update_time; | ||
186 | /* | ||
187 | * This should only happen when time goes backwards, which it | ||
188 | * unfortunately does during sched clock init when we swap over to TSC. | ||
189 | */ | ||
190 | if ((s64)delta < 0) { | ||
191 | sa->last_update_time = now; | ||
192 | return 0; | ||
193 | } | ||
194 | |||
195 | /* | ||
196 | * Use 1024ns as the unit of measurement since it's a reasonable | ||
197 | * approximation of 1us and fast to compute. | ||
198 | */ | ||
199 | delta >>= 10; | ||
200 | if (!delta) | ||
201 | return 0; | ||
202 | |||
203 | sa->last_update_time += delta << 10; | ||
204 | |||
205 | /* | ||
206 | * running is a subset of runnable (weight) so running can't be set if | ||
207 | * runnable is clear. But there are some corner cases where the current | ||
208 | * se has been already dequeued but cfs_rq->curr still points to it. | ||
209 | * This means that weight will be 0 but not running for a sched_entity | ||
210 | * but also for a cfs_rq if the latter becomes idle. As an example, | ||
211 | * this happens during idle_balance() which calls | ||
212 | * update_blocked_averages() | ||
213 | */ | ||
214 | if (!load) | ||
215 | runnable = running = 0; | ||
216 | |||
217 | /* | ||
218 | * Now we know we crossed measurement unit boundaries. The *_avg | ||
219 | * accrues by two steps: | ||
220 | * | ||
221 | * Step 1: accumulate *_sum since last_update_time. If we haven't | ||
222 | * crossed period boundaries, finish. | ||
223 | */ | ||
224 | if (!accumulate_sum(delta, cpu, sa, load, runnable, running)) | ||
225 | return 0; | ||
226 | |||
227 | return 1; | ||
228 | } | ||
229 | |||
230 | static __always_inline void | ||
231 | ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) | ||
232 | { | ||
233 | u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; | ||
234 | |||
235 | /* | ||
236 | * Step 2: update *_avg. | ||
237 | */ | ||
238 | sa->load_avg = div_u64(load * sa->load_sum, divider); | ||
239 | sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); | ||
240 | sa->util_avg = sa->util_sum / divider; | ||
241 | } | ||
242 | |||
243 | /* | ||
244 | * sched_entity: | ||
245 | * | ||
246 | * task: | ||
247 | * se_runnable() == se_weight() | ||
248 | * | ||
249 | * group: [ see update_cfs_group() ] | ||
250 | * se_weight() = tg->weight * grq->load_avg / tg->load_avg | ||
251 | * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg | ||
252 | * | ||
253 | * load_sum := runnable_sum | ||
254 | * load_avg = se_weight(se) * runnable_avg | ||
255 | * | ||
256 | * runnable_load_sum := runnable_sum | ||
257 | * runnable_load_avg = se_runnable(se) * runnable_avg | ||
258 | * | ||
259 | * XXX collapse load_sum and runnable_load_sum | ||
260 | * | ||
261 | * cfq_rq: | ||
262 | * | ||
263 | * load_sum = \Sum se_weight(se) * se->avg.load_sum | ||
264 | * load_avg = \Sum se->avg.load_avg | ||
265 | * | ||
266 | * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum | ||
267 | * runnable_load_avg = \Sum se->avg.runable_load_avg | ||
268 | */ | ||
269 | |||
270 | int __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) | ||
271 | { | ||
272 | if (entity_is_task(se)) | ||
273 | se->runnable_weight = se->load.weight; | ||
274 | |||
275 | if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) { | ||
276 | ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); | ||
277 | return 1; | ||
278 | } | ||
279 | |||
280 | return 0; | ||
281 | } | ||
282 | |||
283 | int __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) | ||
284 | { | ||
285 | if (entity_is_task(se)) | ||
286 | se->runnable_weight = se->load.weight; | ||
287 | |||
288 | if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq, | ||
289 | cfs_rq->curr == se)) { | ||
290 | |||
291 | ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); | ||
292 | cfs_se_util_change(&se->avg); | ||
293 | return 1; | ||
294 | } | ||
295 | |||
296 | return 0; | ||
297 | } | ||
298 | |||
299 | int __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) | ||
300 | { | ||
301 | if (___update_load_sum(now, cpu, &cfs_rq->avg, | ||
302 | scale_load_down(cfs_rq->load.weight), | ||
303 | scale_load_down(cfs_rq->runnable_weight), | ||
304 | cfs_rq->curr != NULL)) { | ||
305 | |||
306 | ___update_load_avg(&cfs_rq->avg, 1, 1); | ||
307 | return 1; | ||
308 | } | ||
309 | |||
310 | return 0; | ||
311 | } | ||