summaryrefslogtreecommitdiffstats
path: root/kernel/lockdep_internals.h
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2006-07-03 03:24:50 -0400
committerLinus Torvalds <torvalds@g5.osdl.org>2006-07-03 18:27:03 -0400
commitfbb9ce9530fd9b66096d5187fa6a115d16d9746c (patch)
tree1151a55e5d56045bac17b9766e6a4696cff0a26f /kernel/lockdep_internals.h
parentcae2ed9aa573415c6e5de9a09b7ff0d74af793bc (diff)
[PATCH] lockdep: core
Do 'make oldconfig' and accept all the defaults for new config options - reboot into the kernel and if everything goes well it should boot up fine and you should have /proc/lockdep and /proc/lockdep_stats files. Typically if the lock validator finds some problem it will print out voluminous debug output that begins with "BUG: ..." and which syslog output can be used by kernel developers to figure out the precise locking scenario. What does the lock validator do? It "observes" and maps all locking rules as they occur dynamically (as triggered by the kernel's natural use of spinlocks, rwlocks, mutexes and rwsems). Whenever the lock validator subsystem detects a new locking scenario, it validates this new rule against the existing set of rules. If this new rule is consistent with the existing set of rules then the new rule is added transparently and the kernel continues as normal. If the new rule could create a deadlock scenario then this condition is printed out. When determining validity of locking, all possible "deadlock scenarios" are considered: assuming arbitrary number of CPUs, arbitrary irq context and task context constellations, running arbitrary combinations of all the existing locking scenarios. In a typical system this means millions of separate scenarios. This is why we call it a "locking correctness" validator - for all rules that are observed the lock validator proves it with mathematical certainty that a deadlock could not occur (assuming that the lock validator implementation itself is correct and its internal data structures are not corrupted by some other kernel subsystem). [see more details and conditionals of this statement in include/linux/lockdep.h and Documentation/lockdep-design.txt] Furthermore, this "all possible scenarios" property of the validator also enables the finding of complex, highly unlikely multi-CPU multi-context races via single single-context rules, increasing the likelyhood of finding bugs drastically. In practical terms: the lock validator already found a bug in the upstream kernel that could only occur on systems with 3 or more CPUs, and which needed 3 very unlikely code sequences to occur at once on the 3 CPUs. That bug was found and reported on a single-CPU system (!). So in essence a race will be found "piecemail-wise", triggering all the necessary components for the race, without having to reproduce the race scenario itself! In its short existence the lock validator found and reported many bugs before they actually caused a real deadlock. To further increase the efficiency of the validator, the mapping is not per "lock instance", but per "lock-class". For example, all struct inode objects in the kernel have inode->inotify_mutex. If there are 10,000 inodes cached, then there are 10,000 lock objects. But ->inotify_mutex is a single "lock type", and all locking activities that occur against ->inotify_mutex are "unified" into this single lock-class. The advantage of the lock-class approach is that all historical ->inotify_mutex uses are mapped into a single (and as narrow as possible) set of locking rules - regardless of how many different tasks or inode structures it took to build this set of rules. The set of rules persist during the lifetime of the kernel. To see the rough magnitude of checking that the lock validator does, here's a portion of /proc/lockdep_stats, fresh after bootup: lock-classes: 694 [max: 2048] direct dependencies: 1598 [max: 8192] indirect dependencies: 17896 all direct dependencies: 16206 dependency chains: 1910 [max: 8192] in-hardirq chains: 17 in-softirq chains: 105 in-process chains: 1065 stack-trace entries: 38761 [max: 131072] combined max dependencies: 2033928 hardirq-safe locks: 24 hardirq-unsafe locks: 176 softirq-safe locks: 53 softirq-unsafe locks: 137 irq-safe locks: 59 irq-unsafe locks: 176 The lock validator has observed 1598 actual single-thread locking patterns, and has validated all possible 2033928 distinct locking scenarios. More details about the design of the lock validator can be found in Documentation/lockdep-design.txt, which can also found at: http://redhat.com/~mingo/lockdep-patches/lockdep-design.txt [bunk@stusta.de: cleanups] Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'kernel/lockdep_internals.h')
-rw-r--r--kernel/lockdep_internals.h78
1 files changed, 78 insertions, 0 deletions
diff --git a/kernel/lockdep_internals.h b/kernel/lockdep_internals.h
new file mode 100644
index 000000000000..0d355f24fe04
--- /dev/null
+++ b/kernel/lockdep_internals.h
@@ -0,0 +1,78 @@
1/*
2 * kernel/lockdep_internals.h
3 *
4 * Runtime locking correctness validator
5 *
6 * lockdep subsystem internal functions and variables.
7 */
8
9/*
10 * MAX_LOCKDEP_ENTRIES is the maximum number of lock dependencies
11 * we track.
12 *
13 * We use the per-lock dependency maps in two ways: we grow it by adding
14 * every to-be-taken lock to all currently held lock's own dependency
15 * table (if it's not there yet), and we check it for lock order
16 * conflicts and deadlocks.
17 */
18#define MAX_LOCKDEP_ENTRIES 8192UL
19
20#define MAX_LOCKDEP_KEYS_BITS 11
21#define MAX_LOCKDEP_KEYS (1UL << MAX_LOCKDEP_KEYS_BITS)
22
23#define MAX_LOCKDEP_CHAINS_BITS 13
24#define MAX_LOCKDEP_CHAINS (1UL << MAX_LOCKDEP_CHAINS_BITS)
25
26/*
27 * Stack-trace: tightly packed array of stack backtrace
28 * addresses. Protected by the hash_lock.
29 */
30#define MAX_STACK_TRACE_ENTRIES 131072UL
31
32extern struct list_head all_lock_classes;
33
34extern void
35get_usage_chars(struct lock_class *class, char *c1, char *c2, char *c3, char *c4);
36
37extern const char * __get_key_name(struct lockdep_subclass_key *key, char *str);
38
39extern unsigned long nr_lock_classes;
40extern unsigned long nr_list_entries;
41extern unsigned long nr_lock_chains;
42extern unsigned long nr_stack_trace_entries;
43
44extern unsigned int nr_hardirq_chains;
45extern unsigned int nr_softirq_chains;
46extern unsigned int nr_process_chains;
47extern unsigned int max_lockdep_depth;
48extern unsigned int max_recursion_depth;
49
50#ifdef CONFIG_DEBUG_LOCKDEP
51/*
52 * Various lockdep statistics:
53 */
54extern atomic_t chain_lookup_hits;
55extern atomic_t chain_lookup_misses;
56extern atomic_t hardirqs_on_events;
57extern atomic_t hardirqs_off_events;
58extern atomic_t redundant_hardirqs_on;
59extern atomic_t redundant_hardirqs_off;
60extern atomic_t softirqs_on_events;
61extern atomic_t softirqs_off_events;
62extern atomic_t redundant_softirqs_on;
63extern atomic_t redundant_softirqs_off;
64extern atomic_t nr_unused_locks;
65extern atomic_t nr_cyclic_checks;
66extern atomic_t nr_cyclic_check_recursions;
67extern atomic_t nr_find_usage_forwards_checks;
68extern atomic_t nr_find_usage_forwards_recursions;
69extern atomic_t nr_find_usage_backwards_checks;
70extern atomic_t nr_find_usage_backwards_recursions;
71# define debug_atomic_inc(ptr) atomic_inc(ptr)
72# define debug_atomic_dec(ptr) atomic_dec(ptr)
73# define debug_atomic_read(ptr) atomic_read(ptr)
74#else
75# define debug_atomic_inc(ptr) do { } while (0)
76# define debug_atomic_dec(ptr) do { } while (0)
77# define debug_atomic_read(ptr) 0
78#endif