summaryrefslogtreecommitdiffstats
path: root/fs/mbcache2.c
diff options
context:
space:
mode:
authorJan Kara <jack@suse.cz>2016-02-22 11:49:09 -0500
committerTheodore Ts'o <tytso@mit.edu>2016-02-22 11:49:09 -0500
commitf9a61eb4e2471c56a63cd804c7474128138c38ac (patch)
tree4336a713bce2ea6d139775731848816d3b4b30fd /fs/mbcache2.c
parent87f9a031af48defee9f34c6aaf06d6f1988c244d (diff)
mbcache2: reimplement mbcache
Original mbcache was designed to have more features than what ext? filesystems ended up using. It supported entry being in more hashes, it had a home-grown rwlocking of each entry, and one cache could cache entries from multiple filesystems. This genericity also resulted in more complex locking, larger cache entries, and generally more code complexity. This is reimplementation of the mbcache functionality to exactly fit the purpose ext? filesystems use it for. Cache entries are now considerably smaller (7 instead of 13 longs), the code is considerably smaller as well (414 vs 913 lines of code), and IMO also simpler. The new code is also much more lightweight. I have measured the speed using artificial xattr-bench benchmark, which spawns P processes, each process sets xattr for F different files, and the value of xattr is randomly chosen from a pool of V values. Averages of runtimes for 5 runs for various combinations of parameters are below. The first value in each cell is old mbache, the second value is the new mbcache. V=10 F\P 1 2 4 8 16 32 64 10 0.158,0.157 0.208,0.196 0.500,0.277 0.798,0.400 3.258,0.584 13.807,1.047 61.339,2.803 100 0.172,0.167 0.279,0.222 0.520,0.275 0.825,0.341 2.981,0.505 12.022,1.202 44.641,2.943 1000 0.185,0.174 0.297,0.239 0.445,0.283 0.767,0.340 2.329,0.480 6.342,1.198 16.440,3.888 V=100 F\P 1 2 4 8 16 32 64 10 0.162,0.153 0.200,0.186 0.362,0.257 0.671,0.496 1.433,0.943 3.801,1.345 7.938,2.501 100 0.153,0.160 0.221,0.199 0.404,0.264 0.945,0.379 1.556,0.485 3.761,1.156 7.901,2.484 1000 0.215,0.191 0.303,0.246 0.471,0.288 0.960,0.347 1.647,0.479 3.916,1.176 8.058,3.160 V=1000 F\P 1 2 4 8 16 32 64 10 0.151,0.129 0.210,0.163 0.326,0.245 0.685,0.521 1.284,0.859 3.087,2.251 6.451,4.801 100 0.154,0.153 0.211,0.191 0.276,0.282 0.687,0.506 1.202,0.877 3.259,1.954 8.738,2.887 1000 0.145,0.179 0.202,0.222 0.449,0.319 0.899,0.333 1.577,0.524 4.221,1.240 9.782,3.579 V=10000 F\P 1 2 4 8 16 32 64 10 0.161,0.154 0.198,0.190 0.296,0.256 0.662,0.480 1.192,0.818 2.989,2.200 6.362,4.746 100 0.176,0.174 0.236,0.203 0.326,0.255 0.696,0.511 1.183,0.855 4.205,3.444 19.510,17.760 1000 0.199,0.183 0.240,0.227 1.159,1.014 2.286,2.154 6.023,6.039 ---,10.933 ---,36.620 V=100000 F\P 1 2 4 8 16 32 64 10 0.171,0.162 0.204,0.198 0.285,0.230 0.692,0.500 1.225,0.881 2.990,2.243 6.379,4.771 100 0.151,0.171 0.220,0.210 0.295,0.255 0.720,0.518 1.226,0.844 3.423,2.831 19.234,17.544 1000 0.192,0.189 0.249,0.225 1.162,1.043 2.257,2.093 5.853,4.997 ---,10.399 ---,32.198 We see that the new code is faster in pretty much all the cases and starting from 4 processes there are significant gains with the new code resulting in upto 20-times shorter runtimes. Also for large numbers of cached entries all values for the old code could not be measured as the kernel started hitting softlockups and died before the test completed. Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Diffstat (limited to 'fs/mbcache2.c')
-rw-r--r--fs/mbcache2.c359
1 files changed, 359 insertions, 0 deletions
diff --git a/fs/mbcache2.c b/fs/mbcache2.c
new file mode 100644
index 000000000000..5c3e1a8c38f6
--- /dev/null
+++ b/fs/mbcache2.c
@@ -0,0 +1,359 @@
1#include <linux/spinlock.h>
2#include <linux/slab.h>
3#include <linux/list.h>
4#include <linux/list_bl.h>
5#include <linux/module.h>
6#include <linux/sched.h>
7#include <linux/mbcache2.h>
8
9/*
10 * Mbcache is a simple key-value store. Keys need not be unique, however
11 * key-value pairs are expected to be unique (we use this fact in
12 * mb2_cache_entry_delete_block()).
13 *
14 * Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
15 * They use hash of a block contents as a key and block number as a value.
16 * That's why keys need not be unique (different xattr blocks may end up having
17 * the same hash). However block number always uniquely identifies a cache
18 * entry.
19 *
20 * We provide functions for creation and removal of entries, search by key,
21 * and a special "delete entry with given key-value pair" operation. Fixed
22 * size hash table is used for fast key lookups.
23 */
24
25struct mb2_cache {
26 /* Hash table of entries */
27 struct hlist_bl_head *c_hash;
28 /* log2 of hash table size */
29 int c_bucket_bits;
30 /* Protects c_lru_list, c_entry_count */
31 spinlock_t c_lru_list_lock;
32 struct list_head c_lru_list;
33 /* Number of entries in cache */
34 unsigned long c_entry_count;
35 struct shrinker c_shrink;
36};
37
38static struct kmem_cache *mb2_entry_cache;
39
40/*
41 * mb2_cache_entry_create - create entry in cache
42 * @cache - cache where the entry should be created
43 * @mask - gfp mask with which the entry should be allocated
44 * @key - key of the entry
45 * @block - block that contains data
46 *
47 * Creates entry in @cache with key @key and records that data is stored in
48 * block @block. The function returns -EBUSY if entry with the same key
49 * and for the same block already exists in cache. Otherwise 0 is returned.
50 */
51int mb2_cache_entry_create(struct mb2_cache *cache, gfp_t mask, u32 key,
52 sector_t block)
53{
54 struct mb2_cache_entry *entry, *dup;
55 struct hlist_bl_node *dup_node;
56 struct hlist_bl_head *head;
57
58 entry = kmem_cache_alloc(mb2_entry_cache, mask);
59 if (!entry)
60 return -ENOMEM;
61
62 INIT_LIST_HEAD(&entry->e_lru_list);
63 /* One ref for hash, one ref returned */
64 atomic_set(&entry->e_refcnt, 1);
65 entry->e_key = key;
66 entry->e_block = block;
67 head = &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
68 entry->e_hash_list_head = head;
69 hlist_bl_lock(head);
70 hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
71 if (dup->e_key == key && dup->e_block == block) {
72 hlist_bl_unlock(head);
73 kmem_cache_free(mb2_entry_cache, entry);
74 return -EBUSY;
75 }
76 }
77 hlist_bl_add_head(&entry->e_hash_list, head);
78 hlist_bl_unlock(head);
79
80 spin_lock(&cache->c_lru_list_lock);
81 list_add_tail(&entry->e_lru_list, &cache->c_lru_list);
82 /* Grab ref for LRU list */
83 atomic_inc(&entry->e_refcnt);
84 cache->c_entry_count++;
85 spin_unlock(&cache->c_lru_list_lock);
86
87 return 0;
88}
89EXPORT_SYMBOL(mb2_cache_entry_create);
90
91void __mb2_cache_entry_free(struct mb2_cache_entry *entry)
92{
93 kmem_cache_free(mb2_entry_cache, entry);
94}
95EXPORT_SYMBOL(__mb2_cache_entry_free);
96
97static struct mb2_cache_entry *__entry_find(struct mb2_cache *cache,
98 struct mb2_cache_entry *entry,
99 u32 key)
100{
101 struct mb2_cache_entry *old_entry = entry;
102 struct hlist_bl_node *node;
103 struct hlist_bl_head *head;
104
105 if (entry)
106 head = entry->e_hash_list_head;
107 else
108 head = &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
109 hlist_bl_lock(head);
110 if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
111 node = entry->e_hash_list.next;
112 else
113 node = hlist_bl_first(head);
114 while (node) {
115 entry = hlist_bl_entry(node, struct mb2_cache_entry,
116 e_hash_list);
117 if (entry->e_key == key) {
118 atomic_inc(&entry->e_refcnt);
119 goto out;
120 }
121 node = node->next;
122 }
123 entry = NULL;
124out:
125 hlist_bl_unlock(head);
126 if (old_entry)
127 mb2_cache_entry_put(cache, old_entry);
128
129 return entry;
130}
131
132/*
133 * mb2_cache_entry_find_first - find the first entry in cache with given key
134 * @cache: cache where we should search
135 * @key: key to look for
136 *
137 * Search in @cache for entry with key @key. Grabs reference to the first
138 * entry found and returns the entry.
139 */
140struct mb2_cache_entry *mb2_cache_entry_find_first(struct mb2_cache *cache,
141 u32 key)
142{
143 return __entry_find(cache, NULL, key);
144}
145EXPORT_SYMBOL(mb2_cache_entry_find_first);
146
147/*
148 * mb2_cache_entry_find_next - find next entry in cache with the same
149 * @cache: cache where we should search
150 * @entry: entry to start search from
151 *
152 * Finds next entry in the hash chain which has the same key as @entry.
153 * If @entry is unhashed (which can happen when deletion of entry races
154 * with the search), finds the first entry in the hash chain. The function
155 * drops reference to @entry and returns with a reference to the found entry.
156 */
157struct mb2_cache_entry *mb2_cache_entry_find_next(struct mb2_cache *cache,
158 struct mb2_cache_entry *entry)
159{
160 return __entry_find(cache, entry, entry->e_key);
161}
162EXPORT_SYMBOL(mb2_cache_entry_find_next);
163
164/* mb2_cache_entry_delete_block - remove information about block from cache
165 * @cache - cache we work with
166 * @key - key of the entry to remove
167 * @block - block containing data for @key
168 *
169 * Remove entry from cache @cache with key @key with data stored in @block.
170 */
171void mb2_cache_entry_delete_block(struct mb2_cache *cache, u32 key,
172 sector_t block)
173{
174 struct hlist_bl_node *node;
175 struct hlist_bl_head *head;
176 struct mb2_cache_entry *entry;
177
178 head = &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
179 hlist_bl_lock(head);
180 hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
181 if (entry->e_key == key && entry->e_block == block) {
182 /* We keep hash list reference to keep entry alive */
183 hlist_bl_del_init(&entry->e_hash_list);
184 hlist_bl_unlock(head);
185 spin_lock(&cache->c_lru_list_lock);
186 if (!list_empty(&entry->e_lru_list)) {
187 list_del_init(&entry->e_lru_list);
188 cache->c_entry_count--;
189 atomic_dec(&entry->e_refcnt);
190 }
191 spin_unlock(&cache->c_lru_list_lock);
192 mb2_cache_entry_put(cache, entry);
193 return;
194 }
195 }
196 hlist_bl_unlock(head);
197}
198EXPORT_SYMBOL(mb2_cache_entry_delete_block);
199
200/* mb2_cache_entry_touch - cache entry got used
201 * @cache - cache the entry belongs to
202 * @entry - entry that got used
203 *
204 * Move entry in lru list to reflect the fact that it was used.
205 */
206void mb2_cache_entry_touch(struct mb2_cache *cache,
207 struct mb2_cache_entry *entry)
208{
209 spin_lock(&cache->c_lru_list_lock);
210 if (!list_empty(&entry->e_lru_list))
211 list_move_tail(&cache->c_lru_list, &entry->e_lru_list);
212 spin_unlock(&cache->c_lru_list_lock);
213}
214EXPORT_SYMBOL(mb2_cache_entry_touch);
215
216static unsigned long mb2_cache_count(struct shrinker *shrink,
217 struct shrink_control *sc)
218{
219 struct mb2_cache *cache = container_of(shrink, struct mb2_cache,
220 c_shrink);
221
222 return cache->c_entry_count;
223}
224
225/* Shrink number of entries in cache */
226static unsigned long mb2_cache_scan(struct shrinker *shrink,
227 struct shrink_control *sc)
228{
229 int nr_to_scan = sc->nr_to_scan;
230 struct mb2_cache *cache = container_of(shrink, struct mb2_cache,
231 c_shrink);
232 struct mb2_cache_entry *entry;
233 struct hlist_bl_head *head;
234 unsigned int shrunk = 0;
235
236 spin_lock(&cache->c_lru_list_lock);
237 while (nr_to_scan-- && !list_empty(&cache->c_lru_list)) {
238 entry = list_first_entry(&cache->c_lru_list,
239 struct mb2_cache_entry, e_lru_list);
240 list_del_init(&entry->e_lru_list);
241 cache->c_entry_count--;
242 /*
243 * We keep LRU list reference so that entry doesn't go away
244 * from under us.
245 */
246 spin_unlock(&cache->c_lru_list_lock);
247 head = entry->e_hash_list_head;
248 hlist_bl_lock(head);
249 if (!hlist_bl_unhashed(&entry->e_hash_list)) {
250 hlist_bl_del_init(&entry->e_hash_list);
251 atomic_dec(&entry->e_refcnt);
252 }
253 hlist_bl_unlock(head);
254 if (mb2_cache_entry_put(cache, entry))
255 shrunk++;
256 cond_resched();
257 spin_lock(&cache->c_lru_list_lock);
258 }
259 spin_unlock(&cache->c_lru_list_lock);
260
261 return shrunk;
262}
263
264/*
265 * mb2_cache_create - create cache
266 * @bucket_bits: log2 of the hash table size
267 *
268 * Create cache for keys with 2^bucket_bits hash entries.
269 */
270struct mb2_cache *mb2_cache_create(int bucket_bits)
271{
272 struct mb2_cache *cache;
273 int bucket_count = 1 << bucket_bits;
274 int i;
275
276 if (!try_module_get(THIS_MODULE))
277 return NULL;
278
279 cache = kzalloc(sizeof(struct mb2_cache), GFP_KERNEL);
280 if (!cache)
281 goto err_out;
282 cache->c_bucket_bits = bucket_bits;
283 INIT_LIST_HEAD(&cache->c_lru_list);
284 spin_lock_init(&cache->c_lru_list_lock);
285 cache->c_hash = kmalloc(bucket_count * sizeof(struct hlist_bl_head),
286 GFP_KERNEL);
287 if (!cache->c_hash) {
288 kfree(cache);
289 goto err_out;
290 }
291 for (i = 0; i < bucket_count; i++)
292 INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
293
294 cache->c_shrink.count_objects = mb2_cache_count;
295 cache->c_shrink.scan_objects = mb2_cache_scan;
296 cache->c_shrink.seeks = DEFAULT_SEEKS;
297 register_shrinker(&cache->c_shrink);
298
299 return cache;
300
301err_out:
302 module_put(THIS_MODULE);
303 return NULL;
304}
305EXPORT_SYMBOL(mb2_cache_create);
306
307/*
308 * mb2_cache_destroy - destroy cache
309 * @cache: the cache to destroy
310 *
311 * Free all entries in cache and cache itself. Caller must make sure nobody
312 * (except shrinker) can reach @cache when calling this.
313 */
314void mb2_cache_destroy(struct mb2_cache *cache)
315{
316 struct mb2_cache_entry *entry, *next;
317
318 unregister_shrinker(&cache->c_shrink);
319
320 /*
321 * We don't bother with any locking. Cache must not be used at this
322 * point.
323 */
324 list_for_each_entry_safe(entry, next, &cache->c_lru_list, e_lru_list) {
325 if (!hlist_bl_unhashed(&entry->e_hash_list)) {
326 hlist_bl_del_init(&entry->e_hash_list);
327 atomic_dec(&entry->e_refcnt);
328 } else
329 WARN_ON(1);
330 list_del(&entry->e_lru_list);
331 WARN_ON(atomic_read(&entry->e_refcnt) != 1);
332 mb2_cache_entry_put(cache, entry);
333 }
334 kfree(cache->c_hash);
335 kfree(cache);
336 module_put(THIS_MODULE);
337}
338EXPORT_SYMBOL(mb2_cache_destroy);
339
340static int __init mb2cache_init(void)
341{
342 mb2_entry_cache = kmem_cache_create("mbcache",
343 sizeof(struct mb2_cache_entry), 0,
344 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
345 BUG_ON(!mb2_entry_cache);
346 return 0;
347}
348
349static void __exit mb2cache_exit(void)
350{
351 kmem_cache_destroy(mb2_entry_cache);
352}
353
354module_init(mb2cache_init)
355module_exit(mb2cache_exit)
356
357MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
358MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
359MODULE_LICENSE("GPL");