summaryrefslogtreecommitdiffstats
path: root/drivers/clocksource/timer-fttmr010.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2017-07-03 19:14:51 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2017-07-03 19:14:51 -0400
commit1b044f1cfc65a7d90b209dfabd57e16d98b58c5b (patch)
treead657c911b563f9176b17578c0b88a1ea9916a02 /drivers/clocksource/timer-fttmr010.c
parente0f3e8f14da868047c524a0cf11e08b95fd1b008 (diff)
parent2287d8664fe7345ead891017eccd879fc605305e (diff)
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner: "A rather large update for timers/timekeeping: - compat syscall consolidation (Al Viro) - Posix timer consolidation (Christoph Helwig / Thomas Gleixner) - Cleanup of the device tree based initialization for clockevents and clocksources (Daniel Lezcano) - Consolidation of the FTTMR010 clocksource/event driver (Linus Walleij) - The usual set of small fixes and updates all over the place" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (93 commits) timers: Make the cpu base lock raw clocksource/drivers/mips-gic-timer: Fix an error code in 'gic_clocksource_of_init()' clocksource/drivers/fsl_ftm_timer: Unmap region obtained by of_iomap clocksource/drivers/tcb_clksrc: Make IO endian agnostic clocksource/drivers/sun4i: Switch to the timer-of common init clocksource/drivers/timer-of: Fix invalid iomap check Revert "ktime: Simplify ktime_compare implementation" clocksource/drivers: Fix uninitialized variable use in timer_of_init kselftests: timers: Add test for frequency step kselftests: timers: Fix inconsistency-check to not ignore first timestamp time: Add warning about imminent deprecation of CONFIG_GENERIC_TIME_VSYSCALL_OLD time: Clean up CLOCK_MONOTONIC_RAW time handling posix-cpu-timers: Make timespec to nsec conversion safe itimer: Make timeval to nsec conversion range limited timers: Fix parameter description of try_to_del_timer_sync() ktime: Simplify ktime_compare implementation clocksource/drivers/fttmr010: Factor out clock read code clocksource/drivers/fttmr010: Implement delay timer clocksource/drivers: Add timer-of common init routine clocksource/drivers/tcb_clksrc: Save timer context on suspend/resume ...
Diffstat (limited to 'drivers/clocksource/timer-fttmr010.c')
-rw-r--r--drivers/clocksource/timer-fttmr010.c476
1 files changed, 289 insertions, 187 deletions
diff --git a/drivers/clocksource/timer-fttmr010.c b/drivers/clocksource/timer-fttmr010.c
index b4a6f1e4bc54..66dd909960c6 100644
--- a/drivers/clocksource/timer-fttmr010.c
+++ b/drivers/clocksource/timer-fttmr010.c
@@ -11,12 +11,13 @@
11#include <linux/of.h> 11#include <linux/of.h>
12#include <linux/of_address.h> 12#include <linux/of_address.h>
13#include <linux/of_irq.h> 13#include <linux/of_irq.h>
14#include <linux/mfd/syscon.h>
15#include <linux/regmap.h>
16#include <linux/clockchips.h> 14#include <linux/clockchips.h>
17#include <linux/clocksource.h> 15#include <linux/clocksource.h>
18#include <linux/sched_clock.h> 16#include <linux/sched_clock.h>
19#include <linux/clk.h> 17#include <linux/clk.h>
18#include <linux/slab.h>
19#include <linux/bitops.h>
20#include <linux/delay.h>
20 21
21/* 22/*
22 * Register definitions for the timers 23 * Register definitions for the timers
@@ -37,267 +38,368 @@
37#define TIMER_INTR_STATE (0x34) 38#define TIMER_INTR_STATE (0x34)
38#define TIMER_INTR_MASK (0x38) 39#define TIMER_INTR_MASK (0x38)
39 40
40#define TIMER_1_CR_ENABLE (1 << 0) 41#define TIMER_1_CR_ENABLE BIT(0)
41#define TIMER_1_CR_CLOCK (1 << 1) 42#define TIMER_1_CR_CLOCK BIT(1)
42#define TIMER_1_CR_INT (1 << 2) 43#define TIMER_1_CR_INT BIT(2)
43#define TIMER_2_CR_ENABLE (1 << 3) 44#define TIMER_2_CR_ENABLE BIT(3)
44#define TIMER_2_CR_CLOCK (1 << 4) 45#define TIMER_2_CR_CLOCK BIT(4)
45#define TIMER_2_CR_INT (1 << 5) 46#define TIMER_2_CR_INT BIT(5)
46#define TIMER_3_CR_ENABLE (1 << 6) 47#define TIMER_3_CR_ENABLE BIT(6)
47#define TIMER_3_CR_CLOCK (1 << 7) 48#define TIMER_3_CR_CLOCK BIT(7)
48#define TIMER_3_CR_INT (1 << 8) 49#define TIMER_3_CR_INT BIT(8)
49#define TIMER_1_CR_UPDOWN (1 << 9) 50#define TIMER_1_CR_UPDOWN BIT(9)
50#define TIMER_2_CR_UPDOWN (1 << 10) 51#define TIMER_2_CR_UPDOWN BIT(10)
51#define TIMER_3_CR_UPDOWN (1 << 11) 52#define TIMER_3_CR_UPDOWN BIT(11)
52#define TIMER_DEFAULT_FLAGS (TIMER_1_CR_UPDOWN | \ 53
53 TIMER_3_CR_ENABLE | \ 54/*
54 TIMER_3_CR_UPDOWN) 55 * The Aspeed AST2400 moves bits around in the control register
55 56 * and lacks bits for setting the timer to count upwards.
56#define TIMER_1_INT_MATCH1 (1 << 0) 57 */
57#define TIMER_1_INT_MATCH2 (1 << 1) 58#define TIMER_1_CR_ASPEED_ENABLE BIT(0)
58#define TIMER_1_INT_OVERFLOW (1 << 2) 59#define TIMER_1_CR_ASPEED_CLOCK BIT(1)
59#define TIMER_2_INT_MATCH1 (1 << 3) 60#define TIMER_1_CR_ASPEED_INT BIT(2)
60#define TIMER_2_INT_MATCH2 (1 << 4) 61#define TIMER_2_CR_ASPEED_ENABLE BIT(4)
61#define TIMER_2_INT_OVERFLOW (1 << 5) 62#define TIMER_2_CR_ASPEED_CLOCK BIT(5)
62#define TIMER_3_INT_MATCH1 (1 << 6) 63#define TIMER_2_CR_ASPEED_INT BIT(6)
63#define TIMER_3_INT_MATCH2 (1 << 7) 64#define TIMER_3_CR_ASPEED_ENABLE BIT(8)
64#define TIMER_3_INT_OVERFLOW (1 << 8) 65#define TIMER_3_CR_ASPEED_CLOCK BIT(9)
66#define TIMER_3_CR_ASPEED_INT BIT(10)
67
68#define TIMER_1_INT_MATCH1 BIT(0)
69#define TIMER_1_INT_MATCH2 BIT(1)
70#define TIMER_1_INT_OVERFLOW BIT(2)
71#define TIMER_2_INT_MATCH1 BIT(3)
72#define TIMER_2_INT_MATCH2 BIT(4)
73#define TIMER_2_INT_OVERFLOW BIT(5)
74#define TIMER_3_INT_MATCH1 BIT(6)
75#define TIMER_3_INT_MATCH2 BIT(7)
76#define TIMER_3_INT_OVERFLOW BIT(8)
65#define TIMER_INT_ALL_MASK 0x1ff 77#define TIMER_INT_ALL_MASK 0x1ff
66 78
67static unsigned int tick_rate; 79struct fttmr010 {
68static void __iomem *base; 80 void __iomem *base;
81 unsigned int tick_rate;
82 bool count_down;
83 u32 t1_enable_val;
84 struct clock_event_device clkevt;
85#ifdef CONFIG_ARM
86 struct delay_timer delay_timer;
87#endif
88};
89
90/*
91 * A local singleton used by sched_clock and delay timer reads, which are
92 * fast and stateless
93 */
94static struct fttmr010 *local_fttmr;
95
96static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
97{
98 return container_of(evt, struct fttmr010, clkevt);
99}
100
101static unsigned long fttmr010_read_current_timer_up(void)
102{
103 return readl(local_fttmr->base + TIMER2_COUNT);
104}
105
106static unsigned long fttmr010_read_current_timer_down(void)
107{
108 return ~readl(local_fttmr->base + TIMER2_COUNT);
109}
110
111static u64 notrace fttmr010_read_sched_clock_up(void)
112{
113 return fttmr010_read_current_timer_up();
114}
69 115
70static u64 notrace fttmr010_read_sched_clock(void) 116static u64 notrace fttmr010_read_sched_clock_down(void)
71{ 117{
72 return readl(base + TIMER3_COUNT); 118 return fttmr010_read_current_timer_down();
73} 119}
74 120
75static int fttmr010_timer_set_next_event(unsigned long cycles, 121static int fttmr010_timer_set_next_event(unsigned long cycles,
76 struct clock_event_device *evt) 122 struct clock_event_device *evt)
77{ 123{
124 struct fttmr010 *fttmr010 = to_fttmr010(evt);
78 u32 cr; 125 u32 cr;
79 126
80 /* Setup the match register */ 127 /* Stop */
81 cr = readl(base + TIMER1_COUNT); 128 cr = readl(fttmr010->base + TIMER_CR);
82 writel(cr + cycles, base + TIMER1_MATCH1); 129 cr &= ~fttmr010->t1_enable_val;
83 if (readl(base + TIMER1_COUNT) - cr > cycles) 130 writel(cr, fttmr010->base + TIMER_CR);
84 return -ETIME; 131
132 /* Setup the match register forward/backward in time */
133 cr = readl(fttmr010->base + TIMER1_COUNT);
134 if (fttmr010->count_down)
135 cr -= cycles;
136 else
137 cr += cycles;
138 writel(cr, fttmr010->base + TIMER1_MATCH1);
139
140 /* Start */
141 cr = readl(fttmr010->base + TIMER_CR);
142 cr |= fttmr010->t1_enable_val;
143 writel(cr, fttmr010->base + TIMER_CR);
85 144
86 return 0; 145 return 0;
87} 146}
88 147
89static int fttmr010_timer_shutdown(struct clock_event_device *evt) 148static int fttmr010_timer_shutdown(struct clock_event_device *evt)
90{ 149{
150 struct fttmr010 *fttmr010 = to_fttmr010(evt);
91 u32 cr; 151 u32 cr;
92 152
93 /* 153 /* Stop */
94 * Disable also for oneshot: the set_next() call will arm the timer 154 cr = readl(fttmr010->base + TIMER_CR);
95 * instead. 155 cr &= ~fttmr010->t1_enable_val;
96 */ 156 writel(cr, fttmr010->base + TIMER_CR);
97 /* Stop timer and interrupt. */ 157
98 cr = readl(base + TIMER_CR); 158 return 0;
99 cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT); 159}
100 writel(cr, base + TIMER_CR); 160
161static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
162{
163 struct fttmr010 *fttmr010 = to_fttmr010(evt);
164 u32 cr;
165
166 /* Stop */
167 cr = readl(fttmr010->base + TIMER_CR);
168 cr &= ~fttmr010->t1_enable_val;
169 writel(cr, fttmr010->base + TIMER_CR);
101 170
102 /* Setup counter start from 0 */ 171 /* Setup counter start from 0 or ~0 */
103 writel(0, base + TIMER1_COUNT); 172 writel(0, fttmr010->base + TIMER1_COUNT);
104 writel(0, base + TIMER1_LOAD); 173 if (fttmr010->count_down)
174 writel(~0, fttmr010->base + TIMER1_LOAD);
175 else
176 writel(0, fttmr010->base + TIMER1_LOAD);
105 177
106 /* enable interrupt */ 178 /* Enable interrupt */
107 cr = readl(base + TIMER_INTR_MASK); 179 cr = readl(fttmr010->base + TIMER_INTR_MASK);
108 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2); 180 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
109 cr |= TIMER_1_INT_MATCH1; 181 cr |= TIMER_1_INT_MATCH1;
110 writel(cr, base + TIMER_INTR_MASK); 182 writel(cr, fttmr010->base + TIMER_INTR_MASK);
111
112 /* start the timer */
113 cr = readl(base + TIMER_CR);
114 cr |= TIMER_1_CR_ENABLE;
115 writel(cr, base + TIMER_CR);
116 183
117 return 0; 184 return 0;
118} 185}
119 186
120static int fttmr010_timer_set_periodic(struct clock_event_device *evt) 187static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
121{ 188{
122 u32 period = DIV_ROUND_CLOSEST(tick_rate, HZ); 189 struct fttmr010 *fttmr010 = to_fttmr010(evt);
190 u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
123 u32 cr; 191 u32 cr;
124 192
125 /* Stop timer and interrupt */ 193 /* Stop */
126 cr = readl(base + TIMER_CR); 194 cr = readl(fttmr010->base + TIMER_CR);
127 cr &= ~(TIMER_1_CR_ENABLE | TIMER_1_CR_INT); 195 cr &= ~fttmr010->t1_enable_val;
128 writel(cr, base + TIMER_CR); 196 writel(cr, fttmr010->base + TIMER_CR);
129 197
130 /* Setup timer to fire at 1/HT intervals. */ 198 /* Setup timer to fire at 1/HZ intervals. */
131 cr = 0xffffffff - (period - 1); 199 if (fttmr010->count_down) {
132 writel(cr, base + TIMER1_COUNT); 200 writel(period, fttmr010->base + TIMER1_LOAD);
133 writel(cr, base + TIMER1_LOAD); 201 writel(0, fttmr010->base + TIMER1_MATCH1);
134 202 } else {
135 /* enable interrupt on overflow */ 203 cr = 0xffffffff - (period - 1);
136 cr = readl(base + TIMER_INTR_MASK); 204 writel(cr, fttmr010->base + TIMER1_COUNT);
137 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2); 205 writel(cr, fttmr010->base + TIMER1_LOAD);
138 cr |= TIMER_1_INT_OVERFLOW; 206
139 writel(cr, base + TIMER_INTR_MASK); 207 /* Enable interrupt on overflow */
208 cr = readl(fttmr010->base + TIMER_INTR_MASK);
209 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
210 cr |= TIMER_1_INT_OVERFLOW;
211 writel(cr, fttmr010->base + TIMER_INTR_MASK);
212 }
140 213
141 /* Start the timer */ 214 /* Start the timer */
142 cr = readl(base + TIMER_CR); 215 cr = readl(fttmr010->base + TIMER_CR);
143 cr |= TIMER_1_CR_ENABLE; 216 cr |= fttmr010->t1_enable_val;
144 cr |= TIMER_1_CR_INT; 217 writel(cr, fttmr010->base + TIMER_CR);
145 writel(cr, base + TIMER_CR);
146 218
147 return 0; 219 return 0;
148} 220}
149 221
150/* Use TIMER1 as clock event */
151static struct clock_event_device fttmr010_clockevent = {
152 .name = "TIMER1",
153 /* Reasonably fast and accurate clock event */
154 .rating = 300,
155 .shift = 32,
156 .features = CLOCK_EVT_FEAT_PERIODIC |
157 CLOCK_EVT_FEAT_ONESHOT,
158 .set_next_event = fttmr010_timer_set_next_event,
159 .set_state_shutdown = fttmr010_timer_shutdown,
160 .set_state_periodic = fttmr010_timer_set_periodic,
161 .set_state_oneshot = fttmr010_timer_shutdown,
162 .tick_resume = fttmr010_timer_shutdown,
163};
164
165/* 222/*
166 * IRQ handler for the timer 223 * IRQ handler for the timer
167 */ 224 */
168static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id) 225static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
169{ 226{
170 struct clock_event_device *evt = &fttmr010_clockevent; 227 struct clock_event_device *evt = dev_id;
171 228
172 evt->event_handler(evt); 229 evt->event_handler(evt);
173 return IRQ_HANDLED; 230 return IRQ_HANDLED;
174} 231}
175 232
176static struct irqaction fttmr010_timer_irq = { 233static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
177 .name = "Faraday FTTMR010 Timer Tick",
178 .flags = IRQF_TIMER,
179 .handler = fttmr010_timer_interrupt,
180};
181
182static int __init fttmr010_timer_common_init(struct device_node *np)
183{ 234{
235 struct fttmr010 *fttmr010;
184 int irq; 236 int irq;
237 struct clk *clk;
238 int ret;
239 u32 val;
240
241 /*
242 * These implementations require a clock reference.
243 * FIXME: we currently only support clocking using PCLK
244 * and using EXTCLK is not supported in the driver.
245 */
246 clk = of_clk_get_by_name(np, "PCLK");
247 if (IS_ERR(clk)) {
248 pr_err("could not get PCLK\n");
249 return PTR_ERR(clk);
250 }
251 ret = clk_prepare_enable(clk);
252 if (ret) {
253 pr_err("failed to enable PCLK\n");
254 return ret;
255 }
185 256
186 base = of_iomap(np, 0); 257 fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
187 if (!base) { 258 if (!fttmr010) {
259 ret = -ENOMEM;
260 goto out_disable_clock;
261 }
262 fttmr010->tick_rate = clk_get_rate(clk);
263
264 fttmr010->base = of_iomap(np, 0);
265 if (!fttmr010->base) {
188 pr_err("Can't remap registers"); 266 pr_err("Can't remap registers");
189 return -ENXIO; 267 ret = -ENXIO;
268 goto out_free;
190 } 269 }
191 /* IRQ for timer 1 */ 270 /* IRQ for timer 1 */
192 irq = irq_of_parse_and_map(np, 0); 271 irq = irq_of_parse_and_map(np, 0);
193 if (irq <= 0) { 272 if (irq <= 0) {
194 pr_err("Can't parse IRQ"); 273 pr_err("Can't parse IRQ");
195 return -EINVAL; 274 ret = -EINVAL;
275 goto out_unmap;
276 }
277
278 /*
279 * The Aspeed AST2400 moves bits around in the control register,
280 * otherwise it works the same.
281 */
282 if (is_aspeed) {
283 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
284 TIMER_1_CR_ASPEED_INT;
285 /* Downward not available */
286 fttmr010->count_down = true;
287 } else {
288 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
196 } 289 }
197 290
198 /* 291 /*
199 * Reset the interrupt mask and status 292 * Reset the interrupt mask and status
200 */ 293 */
201 writel(TIMER_INT_ALL_MASK, base + TIMER_INTR_MASK); 294 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
202 writel(0, base + TIMER_INTR_STATE); 295 writel(0, fttmr010->base + TIMER_INTR_STATE);
203 writel(TIMER_DEFAULT_FLAGS, base + TIMER_CR); 296
297 /*
298 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
299 * where everything just counts down.
300 */
301 if (is_aspeed)
302 val = TIMER_2_CR_ASPEED_ENABLE;
303 else {
304 val = TIMER_2_CR_ENABLE;
305 if (!fttmr010->count_down)
306 val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
307 }
308 writel(val, fttmr010->base + TIMER_CR);
204 309
205 /* 310 /*
206 * Setup free-running clocksource timer (interrupts 311 * Setup free-running clocksource timer (interrupts
207 * disabled.) 312 * disabled.)
208 */ 313 */
209 writel(0, base + TIMER3_COUNT); 314 local_fttmr = fttmr010;
210 writel(0, base + TIMER3_LOAD); 315 writel(0, fttmr010->base + TIMER2_COUNT);
211 writel(0, base + TIMER3_MATCH1); 316 writel(0, fttmr010->base + TIMER2_MATCH1);
212 writel(0, base + TIMER3_MATCH2); 317 writel(0, fttmr010->base + TIMER2_MATCH2);
213 clocksource_mmio_init(base + TIMER3_COUNT, 318
214 "fttmr010_clocksource", tick_rate, 319 if (fttmr010->count_down) {
215 300, 32, clocksource_mmio_readl_up); 320 writel(~0, fttmr010->base + TIMER2_LOAD);
216 sched_clock_register(fttmr010_read_sched_clock, 32, tick_rate); 321 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
322 "FTTMR010-TIMER2",
323 fttmr010->tick_rate,
324 300, 32, clocksource_mmio_readl_down);
325 sched_clock_register(fttmr010_read_sched_clock_down, 32,
326 fttmr010->tick_rate);
327 } else {
328 writel(0, fttmr010->base + TIMER2_LOAD);
329 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
330 "FTTMR010-TIMER2",
331 fttmr010->tick_rate,
332 300, 32, clocksource_mmio_readl_up);
333 sched_clock_register(fttmr010_read_sched_clock_up, 32,
334 fttmr010->tick_rate);
335 }
217 336
218 /* 337 /*
219 * Setup clockevent timer (interrupt-driven.) 338 * Setup clockevent timer (interrupt-driven) on timer 1.
220 */ 339 */
221 writel(0, base + TIMER1_COUNT); 340 writel(0, fttmr010->base + TIMER1_COUNT);
222 writel(0, base + TIMER1_LOAD); 341 writel(0, fttmr010->base + TIMER1_LOAD);
223 writel(0, base + TIMER1_MATCH1); 342 writel(0, fttmr010->base + TIMER1_MATCH1);
224 writel(0, base + TIMER1_MATCH2); 343 writel(0, fttmr010->base + TIMER1_MATCH2);
225 setup_irq(irq, &fttmr010_timer_irq); 344 ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
226 fttmr010_clockevent.cpumask = cpumask_of(0); 345 "FTTMR010-TIMER1", &fttmr010->clkevt);
227 clockevents_config_and_register(&fttmr010_clockevent, tick_rate, 346 if (ret) {
347 pr_err("FTTMR010-TIMER1 no IRQ\n");
348 goto out_unmap;
349 }
350
351 fttmr010->clkevt.name = "FTTMR010-TIMER1";
352 /* Reasonably fast and accurate clock event */
353 fttmr010->clkevt.rating = 300;
354 fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
355 CLOCK_EVT_FEAT_ONESHOT;
356 fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
357 fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
358 fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
359 fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
360 fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
361 fttmr010->clkevt.cpumask = cpumask_of(0);
362 fttmr010->clkevt.irq = irq;
363 clockevents_config_and_register(&fttmr010->clkevt,
364 fttmr010->tick_rate,
228 1, 0xffffffff); 365 1, 0xffffffff);
229 366
230 return 0; 367#ifdef CONFIG_ARM
231} 368 /* Also use this timer for delays */
369 if (fttmr010->count_down)
370 fttmr010->delay_timer.read_current_timer =
371 fttmr010_read_current_timer_down;
372 else
373 fttmr010->delay_timer.read_current_timer =
374 fttmr010_read_current_timer_up;
375 fttmr010->delay_timer.freq = fttmr010->tick_rate;
376 register_current_timer_delay(&fttmr010->delay_timer);
377#endif
232 378
233static int __init fttmr010_timer_of_init(struct device_node *np) 379 return 0;
234{
235 /*
236 * These implementations require a clock reference.
237 * FIXME: we currently only support clocking using PCLK
238 * and using EXTCLK is not supported in the driver.
239 */
240 struct clk *clk;
241 380
242 clk = of_clk_get_by_name(np, "PCLK"); 381out_unmap:
243 if (IS_ERR(clk)) { 382 iounmap(fttmr010->base);
244 pr_err("could not get PCLK"); 383out_free:
245 return PTR_ERR(clk); 384 kfree(fttmr010);
246 } 385out_disable_clock:
247 tick_rate = clk_get_rate(clk); 386 clk_disable_unprepare(clk);
248 387
249 return fttmr010_timer_common_init(np); 388 return ret;
250} 389}
251CLOCKSOURCE_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_of_init);
252 390
253/* 391static __init int aspeed_timer_init(struct device_node *np)
254 * Gemini-specific: relevant registers in the global syscon
255 */
256#define GLOBAL_STATUS 0x04
257#define CPU_AHB_RATIO_MASK (0x3 << 18)
258#define CPU_AHB_1_1 (0x0 << 18)
259#define CPU_AHB_3_2 (0x1 << 18)
260#define CPU_AHB_24_13 (0x2 << 18)
261#define CPU_AHB_2_1 (0x3 << 18)
262#define REG_TO_AHB_SPEED(reg) ((((reg) >> 15) & 0x7) * 10 + 130)
263
264static int __init gemini_timer_of_init(struct device_node *np)
265{ 392{
266 static struct regmap *map; 393 return fttmr010_common_init(np, true);
267 int ret; 394}
268 u32 val;
269
270 map = syscon_regmap_lookup_by_phandle(np, "syscon");
271 if (IS_ERR(map)) {
272 pr_err("Can't get regmap for syscon handle\n");
273 return -ENODEV;
274 }
275 ret = regmap_read(map, GLOBAL_STATUS, &val);
276 if (ret) {
277 pr_err("Can't read syscon status register\n");
278 return -ENXIO;
279 }
280
281 tick_rate = REG_TO_AHB_SPEED(val) * 1000000;
282 pr_info("Bus: %dMHz ", tick_rate / 1000000);
283
284 tick_rate /= 6; /* APB bus run AHB*(1/6) */
285
286 switch (val & CPU_AHB_RATIO_MASK) {
287 case CPU_AHB_1_1:
288 pr_cont("(1/1)\n");
289 break;
290 case CPU_AHB_3_2:
291 pr_cont("(3/2)\n");
292 break;
293 case CPU_AHB_24_13:
294 pr_cont("(24/13)\n");
295 break;
296 case CPU_AHB_2_1:
297 pr_cont("(2/1)\n");
298 break;
299 }
300 395
301 return fttmr010_timer_common_init(np); 396static __init int fttmr010_timer_init(struct device_node *np)
397{
398 return fttmr010_common_init(np, false);
302} 399}
303CLOCKSOURCE_OF_DECLARE(gemini, "cortina,gemini-timer", gemini_timer_of_init); 400
401TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
402TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
403TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
404TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
405TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);