summaryrefslogtreecommitdiffstats
path: root/crypto/shash.c
diff options
context:
space:
mode:
authorEric Biggers <ebiggers@google.com>2019-01-06 21:47:42 -0500
committerHerbert Xu <herbert@gondor.apana.org.au>2019-01-18 05:40:24 -0500
commitba7d7433a0e998c902132bd47330e355a1eaa894 (patch)
tree173b444702f5d2114d687711b3376477dbbde26b /crypto/shash.c
parent6b476662b09c393936e0f62c97ad9988d410fd36 (diff)
crypto: hash - set CRYPTO_TFM_NEED_KEY if ->setkey() fails
Some algorithms have a ->setkey() method that is not atomic, in the sense that setting a key can fail after changes were already made to the tfm context. In this case, if a key was already set the tfm can end up in a state that corresponds to neither the old key nor the new key. It's not feasible to make all ->setkey() methods atomic, especially ones that have to key multiple sub-tfms. Therefore, make the crypto API set CRYPTO_TFM_NEED_KEY if ->setkey() fails and the algorithm requires a key, to prevent the tfm from being used until a new key is set. Note: we can't set CRYPTO_TFM_NEED_KEY for OPTIONAL_KEY algorithms, so ->setkey() for those must nevertheless be atomic. That's fine for now since only the crc32 and crc32c algorithms set OPTIONAL_KEY, and it's not intended that OPTIONAL_KEY be used much. [Cc stable mainly because when introducing the NEED_KEY flag I changed AF_ALG to rely on it; and unlike in-kernel crypto API users, AF_ALG previously didn't have this problem. So these "incompletely keyed" states became theoretically accessible via AF_ALG -- though, the opportunities for causing real mischief seem pretty limited.] Fixes: 9fa68f620041 ("crypto: hash - prevent using keyed hashes without setting key") Cc: stable@vger.kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Diffstat (limited to 'crypto/shash.c')
-rw-r--r--crypto/shash.c18
1 files changed, 13 insertions, 5 deletions
diff --git a/crypto/shash.c b/crypto/shash.c
index 44d297b82a8f..40311ccad3fa 100644
--- a/crypto/shash.c
+++ b/crypto/shash.c
@@ -53,6 +53,13 @@ static int shash_setkey_unaligned(struct crypto_shash *tfm, const u8 *key,
53 return err; 53 return err;
54} 54}
55 55
56static void shash_set_needkey(struct crypto_shash *tfm, struct shash_alg *alg)
57{
58 if (crypto_shash_alg_has_setkey(alg) &&
59 !(alg->base.cra_flags & CRYPTO_ALG_OPTIONAL_KEY))
60 crypto_shash_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
61}
62
56int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key, 63int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
57 unsigned int keylen) 64 unsigned int keylen)
58{ 65{
@@ -65,8 +72,10 @@ int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
65 else 72 else
66 err = shash->setkey(tfm, key, keylen); 73 err = shash->setkey(tfm, key, keylen);
67 74
68 if (err) 75 if (unlikely(err)) {
76 shash_set_needkey(tfm, shash);
69 return err; 77 return err;
78 }
70 79
71 crypto_shash_clear_flags(tfm, CRYPTO_TFM_NEED_KEY); 80 crypto_shash_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
72 return 0; 81 return 0;
@@ -373,7 +382,8 @@ int crypto_init_shash_ops_async(struct crypto_tfm *tfm)
373 crt->final = shash_async_final; 382 crt->final = shash_async_final;
374 crt->finup = shash_async_finup; 383 crt->finup = shash_async_finup;
375 crt->digest = shash_async_digest; 384 crt->digest = shash_async_digest;
376 crt->setkey = shash_async_setkey; 385 if (crypto_shash_alg_has_setkey(alg))
386 crt->setkey = shash_async_setkey;
377 387
378 crypto_ahash_set_flags(crt, crypto_shash_get_flags(shash) & 388 crypto_ahash_set_flags(crt, crypto_shash_get_flags(shash) &
379 CRYPTO_TFM_NEED_KEY); 389 CRYPTO_TFM_NEED_KEY);
@@ -395,9 +405,7 @@ static int crypto_shash_init_tfm(struct crypto_tfm *tfm)
395 405
396 hash->descsize = alg->descsize; 406 hash->descsize = alg->descsize;
397 407
398 if (crypto_shash_alg_has_setkey(alg) && 408 shash_set_needkey(hash, alg);
399 !(alg->base.cra_flags & CRYPTO_ALG_OPTIONAL_KEY))
400 crypto_shash_set_flags(hash, CRYPTO_TFM_NEED_KEY);
401 409
402 return 0; 410 return 0;
403} 411}