diff options
author | Andrey Konovalov <andreyknvl@google.com> | 2018-12-28 03:31:10 -0500 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2018-12-28 15:11:44 -0500 |
commit | b3b0e6accb5b3d249760e071f2cf77f696961158 (patch) | |
tree | c4e9b105bde9eb5fac32f7f73215170572c5e86b /Documentation/dev-tools/kasan.rst | |
parent | 2d4acb90878b076b8c735500121f73e32756ddce (diff) |
kasan: update documentation
This patch updates KASAN documentation to reflect the addition of the new
tag-based mode.
Link: http://lkml.kernel.org/r/aabef9de317c54b8a3919a4946ce534c6576726a.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation/dev-tools/kasan.rst')
-rw-r--r-- | Documentation/dev-tools/kasan.rst | 232 |
1 files changed, 138 insertions, 94 deletions
diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst index aabc8738b3d8..b72d07d70239 100644 --- a/Documentation/dev-tools/kasan.rst +++ b/Documentation/dev-tools/kasan.rst | |||
@@ -4,15 +4,25 @@ The Kernel Address Sanitizer (KASAN) | |||
4 | Overview | 4 | Overview |
5 | -------- | 5 | -------- |
6 | 6 | ||
7 | KernelAddressSANitizer (KASAN) is a dynamic memory error detector. It provides | 7 | KernelAddressSANitizer (KASAN) is a dynamic memory error detector designed to |
8 | a fast and comprehensive solution for finding use-after-free and out-of-bounds | 8 | find out-of-bound and use-after-free bugs. KASAN has two modes: generic KASAN |
9 | bugs. | 9 | (similar to userspace ASan) and software tag-based KASAN (similar to userspace |
10 | HWASan). | ||
10 | 11 | ||
11 | KASAN uses compile-time instrumentation for checking every memory access, | 12 | KASAN uses compile-time instrumentation to insert validity checks before every |
12 | therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is | 13 | memory access, and therefore requires a compiler version that supports that. |
13 | required for detection of out-of-bounds accesses to stack or global variables. | ||
14 | 14 | ||
15 | Currently KASAN is supported only for the x86_64 and arm64 architectures. | 15 | Generic KASAN is supported in both GCC and Clang. With GCC it requires version |
16 | 4.9.2 or later for basic support and version 5.0 or later for detection of | ||
17 | out-of-bounds accesses for stack and global variables and for inline | ||
18 | instrumentation mode (see the Usage section). With Clang it requires version | ||
19 | 7.0.0 or later and it doesn't support detection of out-of-bounds accesses for | ||
20 | global variables yet. | ||
21 | |||
22 | Tag-based KASAN is only supported in Clang and requires version 7.0.0 or later. | ||
23 | |||
24 | Currently generic KASAN is supported for the x86_64, arm64, xtensa and s390 | ||
25 | architectures, and tag-based KASAN is supported only for arm64. | ||
16 | 26 | ||
17 | Usage | 27 | Usage |
18 | ----- | 28 | ----- |
@@ -21,12 +31,14 @@ To enable KASAN configure kernel with:: | |||
21 | 31 | ||
22 | CONFIG_KASAN = y | 32 | CONFIG_KASAN = y |
23 | 33 | ||
24 | and choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline and | 34 | and choose between CONFIG_KASAN_GENERIC (to enable generic KASAN) and |
25 | inline are compiler instrumentation types. The former produces smaller binary | 35 | CONFIG_KASAN_SW_TAGS (to enable software tag-based KASAN). |
26 | the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC | 36 | |
27 | version 5.0 or later. | 37 | You also need to choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. |
38 | Outline and inline are compiler instrumentation types. The former produces | ||
39 | smaller binary while the latter is 1.1 - 2 times faster. | ||
28 | 40 | ||
29 | KASAN works with both SLUB and SLAB memory allocators. | 41 | Both KASAN modes work with both SLUB and SLAB memory allocators. |
30 | For better bug detection and nicer reporting, enable CONFIG_STACKTRACE. | 42 | For better bug detection and nicer reporting, enable CONFIG_STACKTRACE. |
31 | 43 | ||
32 | To disable instrumentation for specific files or directories, add a line | 44 | To disable instrumentation for specific files or directories, add a line |
@@ -43,85 +55,85 @@ similar to the following to the respective kernel Makefile: | |||
43 | Error reports | 55 | Error reports |
44 | ~~~~~~~~~~~~~ | 56 | ~~~~~~~~~~~~~ |
45 | 57 | ||
46 | A typical out of bounds access report looks like this:: | 58 | A typical out-of-bounds access generic KASAN report looks like this:: |
47 | 59 | ||
48 | ================================================================== | 60 | ================================================================== |
49 | BUG: AddressSanitizer: out of bounds access in kmalloc_oob_right+0x65/0x75 [test_kasan] at addr ffff8800693bc5d3 | 61 | BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [test_kasan] |
50 | Write of size 1 by task modprobe/1689 | 62 | Write of size 1 at addr ffff8801f44ec37b by task insmod/2760 |
51 | ============================================================================= | 63 | |
52 | BUG kmalloc-128 (Not tainted): kasan error | 64 | CPU: 1 PID: 2760 Comm: insmod Not tainted 4.19.0-rc3+ #698 |
53 | ----------------------------------------------------------------------------- | 65 | Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 |
54 | |||
55 | Disabling lock debugging due to kernel taint | ||
56 | INFO: Allocated in kmalloc_oob_right+0x3d/0x75 [test_kasan] age=0 cpu=0 pid=1689 | ||
57 | __slab_alloc+0x4b4/0x4f0 | ||
58 | kmem_cache_alloc_trace+0x10b/0x190 | ||
59 | kmalloc_oob_right+0x3d/0x75 [test_kasan] | ||
60 | init_module+0x9/0x47 [test_kasan] | ||
61 | do_one_initcall+0x99/0x200 | ||
62 | load_module+0x2cb3/0x3b20 | ||
63 | SyS_finit_module+0x76/0x80 | ||
64 | system_call_fastpath+0x12/0x17 | ||
65 | INFO: Slab 0xffffea0001a4ef00 objects=17 used=7 fp=0xffff8800693bd728 flags=0x100000000004080 | ||
66 | INFO: Object 0xffff8800693bc558 @offset=1368 fp=0xffff8800693bc720 | ||
67 | |||
68 | Bytes b4 ffff8800693bc548: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ | ||
69 | Object ffff8800693bc558: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk | ||
70 | Object ffff8800693bc568: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk | ||
71 | Object ffff8800693bc578: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk | ||
72 | Object ffff8800693bc588: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk | ||
73 | Object ffff8800693bc598: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk | ||
74 | Object ffff8800693bc5a8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk | ||
75 | Object ffff8800693bc5b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk | ||
76 | Object ffff8800693bc5c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk. | ||
77 | Redzone ffff8800693bc5d8: cc cc cc cc cc cc cc cc ........ | ||
78 | Padding ffff8800693bc718: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ | ||
79 | CPU: 0 PID: 1689 Comm: modprobe Tainted: G B 3.18.0-rc1-mm1+ #98 | ||
80 | Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 | ||
81 | ffff8800693bc000 0000000000000000 ffff8800693bc558 ffff88006923bb78 | ||
82 | ffffffff81cc68ae 00000000000000f3 ffff88006d407600 ffff88006923bba8 | ||
83 | ffffffff811fd848 ffff88006d407600 ffffea0001a4ef00 ffff8800693bc558 | ||
84 | Call Trace: | 66 | Call Trace: |
85 | [<ffffffff81cc68ae>] dump_stack+0x46/0x58 | 67 | dump_stack+0x94/0xd8 |
86 | [<ffffffff811fd848>] print_trailer+0xf8/0x160 | 68 | print_address_description+0x73/0x280 |
87 | [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] | 69 | kasan_report+0x144/0x187 |
88 | [<ffffffff811ff0f5>] object_err+0x35/0x40 | 70 | __asan_report_store1_noabort+0x17/0x20 |
89 | [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] | 71 | kmalloc_oob_right+0xa8/0xbc [test_kasan] |
90 | [<ffffffff8120b9fa>] kasan_report_error+0x38a/0x3f0 | 72 | kmalloc_tests_init+0x16/0x700 [test_kasan] |
91 | [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 | 73 | do_one_initcall+0xa5/0x3ae |
92 | [<ffffffff8120b344>] ? kasan_unpoison_shadow+0x14/0x40 | 74 | do_init_module+0x1b6/0x547 |
93 | [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 | 75 | load_module+0x75df/0x8070 |
94 | [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] | 76 | __do_sys_init_module+0x1c6/0x200 |
95 | [<ffffffff8120a995>] __asan_store1+0x75/0xb0 | 77 | __x64_sys_init_module+0x6e/0xb0 |
96 | [<ffffffffa0002601>] ? kmem_cache_oob+0x1d/0xc3 [test_kasan] | 78 | do_syscall_64+0x9f/0x2c0 |
97 | [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] | 79 | entry_SYSCALL_64_after_hwframe+0x44/0xa9 |
98 | [<ffffffffa0002065>] kmalloc_oob_right+0x65/0x75 [test_kasan] | 80 | RIP: 0033:0x7f96443109da |
99 | [<ffffffffa00026b0>] init_module+0x9/0x47 [test_kasan] | 81 | RSP: 002b:00007ffcf0b51b08 EFLAGS: 00000202 ORIG_RAX: 00000000000000af |
100 | [<ffffffff810002d9>] do_one_initcall+0x99/0x200 | 82 | RAX: ffffffffffffffda RBX: 000055dc3ee521a0 RCX: 00007f96443109da |
101 | [<ffffffff811e4e5c>] ? __vunmap+0xec/0x160 | 83 | RDX: 00007f96445cff88 RSI: 0000000000057a50 RDI: 00007f9644992000 |
102 | [<ffffffff81114f63>] load_module+0x2cb3/0x3b20 | 84 | RBP: 000055dc3ee510b0 R08: 0000000000000003 R09: 0000000000000000 |
103 | [<ffffffff8110fd70>] ? m_show+0x240/0x240 | 85 | R10: 00007f964430cd0a R11: 0000000000000202 R12: 00007f96445cff88 |
104 | [<ffffffff81115f06>] SyS_finit_module+0x76/0x80 | 86 | R13: 000055dc3ee51090 R14: 0000000000000000 R15: 0000000000000000 |
105 | [<ffffffff81cd3129>] system_call_fastpath+0x12/0x17 | 87 | |
88 | Allocated by task 2760: | ||
89 | save_stack+0x43/0xd0 | ||
90 | kasan_kmalloc+0xa7/0xd0 | ||
91 | kmem_cache_alloc_trace+0xe1/0x1b0 | ||
92 | kmalloc_oob_right+0x56/0xbc [test_kasan] | ||
93 | kmalloc_tests_init+0x16/0x700 [test_kasan] | ||
94 | do_one_initcall+0xa5/0x3ae | ||
95 | do_init_module+0x1b6/0x547 | ||
96 | load_module+0x75df/0x8070 | ||
97 | __do_sys_init_module+0x1c6/0x200 | ||
98 | __x64_sys_init_module+0x6e/0xb0 | ||
99 | do_syscall_64+0x9f/0x2c0 | ||
100 | entry_SYSCALL_64_after_hwframe+0x44/0xa9 | ||
101 | |||
102 | Freed by task 815: | ||
103 | save_stack+0x43/0xd0 | ||
104 | __kasan_slab_free+0x135/0x190 | ||
105 | kasan_slab_free+0xe/0x10 | ||
106 | kfree+0x93/0x1a0 | ||
107 | umh_complete+0x6a/0xa0 | ||
108 | call_usermodehelper_exec_async+0x4c3/0x640 | ||
109 | ret_from_fork+0x35/0x40 | ||
110 | |||
111 | The buggy address belongs to the object at ffff8801f44ec300 | ||
112 | which belongs to the cache kmalloc-128 of size 128 | ||
113 | The buggy address is located 123 bytes inside of | ||
114 | 128-byte region [ffff8801f44ec300, ffff8801f44ec380) | ||
115 | The buggy address belongs to the page: | ||
116 | page:ffffea0007d13b00 count:1 mapcount:0 mapping:ffff8801f7001640 index:0x0 | ||
117 | flags: 0x200000000000100(slab) | ||
118 | raw: 0200000000000100 ffffea0007d11dc0 0000001a0000001a ffff8801f7001640 | ||
119 | raw: 0000000000000000 0000000080150015 00000001ffffffff 0000000000000000 | ||
120 | page dumped because: kasan: bad access detected | ||
121 | |||
106 | Memory state around the buggy address: | 122 | Memory state around the buggy address: |
107 | ffff8800693bc300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc | 123 | ffff8801f44ec200: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb |
108 | ffff8800693bc380: fc fc 00 00 00 00 00 00 00 00 00 00 00 00 00 fc | 124 | ffff8801f44ec280: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc |
109 | ffff8800693bc400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc | 125 | >ffff8801f44ec300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03 |
110 | ffff8800693bc480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc | 126 | ^ |
111 | ffff8800693bc500: fc fc fc fc fc fc fc fc fc fc fc 00 00 00 00 00 | 127 | ffff8801f44ec380: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb |
112 | >ffff8800693bc580: 00 00 00 00 00 00 00 00 00 00 03 fc fc fc fc fc | 128 | ffff8801f44ec400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc |
113 | ^ | ||
114 | ffff8800693bc600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc | ||
115 | ffff8800693bc680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc | ||
116 | ffff8800693bc700: fc fc fc fc fb fb fb fb fb fb fb fb fb fb fb fb | ||
117 | ffff8800693bc780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb | ||
118 | ffff8800693bc800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb | ||
119 | ================================================================== | 129 | ================================================================== |
120 | 130 | ||
121 | The header of the report discribe what kind of bug happened and what kind of | 131 | The header of the report provides a short summary of what kind of bug happened |
122 | access caused it. It's followed by the description of the accessed slub object | 132 | and what kind of access caused it. It's followed by a stack trace of the bad |
123 | (see 'SLUB Debug output' section in Documentation/vm/slub.rst for details) and | 133 | access, a stack trace of where the accessed memory was allocated (in case bad |
124 | the description of the accessed memory page. | 134 | access happens on a slab object), and a stack trace of where the object was |
135 | freed (in case of a use-after-free bug report). Next comes a description of | ||
136 | the accessed slab object and information about the accessed memory page. | ||
125 | 137 | ||
126 | In the last section the report shows memory state around the accessed address. | 138 | In the last section the report shows memory state around the accessed address. |
127 | Reading this part requires some understanding of how KASAN works. | 139 | Reading this part requires some understanding of how KASAN works. |
@@ -138,18 +150,24 @@ inaccessible memory like redzones or freed memory (see mm/kasan/kasan.h). | |||
138 | In the report above the arrows point to the shadow byte 03, which means that | 150 | In the report above the arrows point to the shadow byte 03, which means that |
139 | the accessed address is partially accessible. | 151 | the accessed address is partially accessible. |
140 | 152 | ||
153 | For tag-based KASAN this last report section shows the memory tags around the | ||
154 | accessed address (see Implementation details section). | ||
155 | |||
141 | 156 | ||
142 | Implementation details | 157 | Implementation details |
143 | ---------------------- | 158 | ---------------------- |
144 | 159 | ||
160 | Generic KASAN | ||
161 | ~~~~~~~~~~~~~ | ||
162 | |||
145 | From a high level, our approach to memory error detection is similar to that | 163 | From a high level, our approach to memory error detection is similar to that |
146 | of kmemcheck: use shadow memory to record whether each byte of memory is safe | 164 | of kmemcheck: use shadow memory to record whether each byte of memory is safe |
147 | to access, and use compile-time instrumentation to check shadow memory on each | 165 | to access, and use compile-time instrumentation to insert checks of shadow |
148 | memory access. | 166 | memory on each memory access. |
149 | 167 | ||
150 | AddressSanitizer dedicates 1/8 of kernel memory to its shadow memory | 168 | Generic KASAN dedicates 1/8th of kernel memory to its shadow memory (e.g. 16TB |
151 | (e.g. 16TB to cover 128TB on x86_64) and uses direct mapping with a scale and | 169 | to cover 128TB on x86_64) and uses direct mapping with a scale and offset to |
152 | offset to translate a memory address to its corresponding shadow address. | 170 | translate a memory address to its corresponding shadow address. |
153 | 171 | ||
154 | Here is the function which translates an address to its corresponding shadow | 172 | Here is the function which translates an address to its corresponding shadow |
155 | address:: | 173 | address:: |
@@ -162,12 +180,38 @@ address:: | |||
162 | 180 | ||
163 | where ``KASAN_SHADOW_SCALE_SHIFT = 3``. | 181 | where ``KASAN_SHADOW_SCALE_SHIFT = 3``. |
164 | 182 | ||
165 | Compile-time instrumentation used for checking memory accesses. Compiler inserts | 183 | Compile-time instrumentation is used to insert memory access checks. Compiler |
166 | function calls (__asan_load*(addr), __asan_store*(addr)) before each memory | 184 | inserts function calls (__asan_load*(addr), __asan_store*(addr)) before each |
167 | access of size 1, 2, 4, 8 or 16. These functions check whether memory access is | 185 | memory access of size 1, 2, 4, 8 or 16. These functions check whether memory |
168 | valid or not by checking corresponding shadow memory. | 186 | access is valid or not by checking corresponding shadow memory. |
169 | 187 | ||
170 | GCC 5.0 has possibility to perform inline instrumentation. Instead of making | 188 | GCC 5.0 has possibility to perform inline instrumentation. Instead of making |
171 | function calls GCC directly inserts the code to check the shadow memory. | 189 | function calls GCC directly inserts the code to check the shadow memory. |
172 | This option significantly enlarges kernel but it gives x1.1-x2 performance | 190 | This option significantly enlarges kernel but it gives x1.1-x2 performance |
173 | boost over outline instrumented kernel. | 191 | boost over outline instrumented kernel. |
192 | |||
193 | Software tag-based KASAN | ||
194 | ~~~~~~~~~~~~~~~~~~~~~~~~ | ||
195 | |||
196 | Tag-based KASAN uses the Top Byte Ignore (TBI) feature of modern arm64 CPUs to | ||
197 | store a pointer tag in the top byte of kernel pointers. Like generic KASAN it | ||
198 | uses shadow memory to store memory tags associated with each 16-byte memory | ||
199 | cell (therefore it dedicates 1/16th of the kernel memory for shadow memory). | ||
200 | |||
201 | On each memory allocation tag-based KASAN generates a random tag, tags the | ||
202 | allocated memory with this tag, and embeds this tag into the returned pointer. | ||
203 | Software tag-based KASAN uses compile-time instrumentation to insert checks | ||
204 | before each memory access. These checks make sure that tag of the memory that | ||
205 | is being accessed is equal to tag of the pointer that is used to access this | ||
206 | memory. In case of a tag mismatch tag-based KASAN prints a bug report. | ||
207 | |||
208 | Software tag-based KASAN also has two instrumentation modes (outline, that | ||
209 | emits callbacks to check memory accesses; and inline, that performs the shadow | ||
210 | memory checks inline). With outline instrumentation mode, a bug report is | ||
211 | simply printed from the function that performs the access check. With inline | ||
212 | instrumentation a brk instruction is emitted by the compiler, and a dedicated | ||
213 | brk handler is used to print bug reports. | ||
214 | |||
215 | A potential expansion of this mode is a hardware tag-based mode, which would | ||
216 | use hardware memory tagging support instead of compiler instrumentation and | ||
217 | manual shadow memory manipulation. | ||