summaryrefslogtreecommitdiffstats
path: root/Documentation/dev-tools/kasan.rst
diff options
context:
space:
mode:
authorAndrey Konovalov <andreyknvl@google.com>2018-12-28 03:31:10 -0500
committerLinus Torvalds <torvalds@linux-foundation.org>2018-12-28 15:11:44 -0500
commitb3b0e6accb5b3d249760e071f2cf77f696961158 (patch)
treec4e9b105bde9eb5fac32f7f73215170572c5e86b /Documentation/dev-tools/kasan.rst
parent2d4acb90878b076b8c735500121f73e32756ddce (diff)
kasan: update documentation
This patch updates KASAN documentation to reflect the addition of the new tag-based mode. Link: http://lkml.kernel.org/r/aabef9de317c54b8a3919a4946ce534c6576726a.1544099024.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'Documentation/dev-tools/kasan.rst')
-rw-r--r--Documentation/dev-tools/kasan.rst232
1 files changed, 138 insertions, 94 deletions
diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
index aabc8738b3d8..b72d07d70239 100644
--- a/Documentation/dev-tools/kasan.rst
+++ b/Documentation/dev-tools/kasan.rst
@@ -4,15 +4,25 @@ The Kernel Address Sanitizer (KASAN)
4Overview 4Overview
5-------- 5--------
6 6
7KernelAddressSANitizer (KASAN) is a dynamic memory error detector. It provides 7KernelAddressSANitizer (KASAN) is a dynamic memory error detector designed to
8a fast and comprehensive solution for finding use-after-free and out-of-bounds 8find out-of-bound and use-after-free bugs. KASAN has two modes: generic KASAN
9bugs. 9(similar to userspace ASan) and software tag-based KASAN (similar to userspace
10HWASan).
10 11
11KASAN uses compile-time instrumentation for checking every memory access, 12KASAN uses compile-time instrumentation to insert validity checks before every
12therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is 13memory access, and therefore requires a compiler version that supports that.
13required for detection of out-of-bounds accesses to stack or global variables.
14 14
15Currently KASAN is supported only for the x86_64 and arm64 architectures. 15Generic KASAN is supported in both GCC and Clang. With GCC it requires version
164.9.2 or later for basic support and version 5.0 or later for detection of
17out-of-bounds accesses for stack and global variables and for inline
18instrumentation mode (see the Usage section). With Clang it requires version
197.0.0 or later and it doesn't support detection of out-of-bounds accesses for
20global variables yet.
21
22Tag-based KASAN is only supported in Clang and requires version 7.0.0 or later.
23
24Currently generic KASAN is supported for the x86_64, arm64, xtensa and s390
25architectures, and tag-based KASAN is supported only for arm64.
16 26
17Usage 27Usage
18----- 28-----
@@ -21,12 +31,14 @@ To enable KASAN configure kernel with::
21 31
22 CONFIG_KASAN = y 32 CONFIG_KASAN = y
23 33
24and choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline and 34and choose between CONFIG_KASAN_GENERIC (to enable generic KASAN) and
25inline are compiler instrumentation types. The former produces smaller binary 35CONFIG_KASAN_SW_TAGS (to enable software tag-based KASAN).
26the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC 36
27version 5.0 or later. 37You also need to choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE.
38Outline and inline are compiler instrumentation types. The former produces
39smaller binary while the latter is 1.1 - 2 times faster.
28 40
29KASAN works with both SLUB and SLAB memory allocators. 41Both KASAN modes work with both SLUB and SLAB memory allocators.
30For better bug detection and nicer reporting, enable CONFIG_STACKTRACE. 42For better bug detection and nicer reporting, enable CONFIG_STACKTRACE.
31 43
32To disable instrumentation for specific files or directories, add a line 44To disable instrumentation for specific files or directories, add a line
@@ -43,85 +55,85 @@ similar to the following to the respective kernel Makefile:
43Error reports 55Error reports
44~~~~~~~~~~~~~ 56~~~~~~~~~~~~~
45 57
46A typical out of bounds access report looks like this:: 58A typical out-of-bounds access generic KASAN report looks like this::
47 59
48 ================================================================== 60 ==================================================================
49 BUG: AddressSanitizer: out of bounds access in kmalloc_oob_right+0x65/0x75 [test_kasan] at addr ffff8800693bc5d3 61 BUG: KASAN: slab-out-of-bounds in kmalloc_oob_right+0xa8/0xbc [test_kasan]
50 Write of size 1 by task modprobe/1689 62 Write of size 1 at addr ffff8801f44ec37b by task insmod/2760
51 ============================================================================= 63
52 BUG kmalloc-128 (Not tainted): kasan error 64 CPU: 1 PID: 2760 Comm: insmod Not tainted 4.19.0-rc3+ #698
53 ----------------------------------------------------------------------------- 65 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
54
55 Disabling lock debugging due to kernel taint
56 INFO: Allocated in kmalloc_oob_right+0x3d/0x75 [test_kasan] age=0 cpu=0 pid=1689
57 __slab_alloc+0x4b4/0x4f0
58 kmem_cache_alloc_trace+0x10b/0x190
59 kmalloc_oob_right+0x3d/0x75 [test_kasan]
60 init_module+0x9/0x47 [test_kasan]
61 do_one_initcall+0x99/0x200
62 load_module+0x2cb3/0x3b20
63 SyS_finit_module+0x76/0x80
64 system_call_fastpath+0x12/0x17
65 INFO: Slab 0xffffea0001a4ef00 objects=17 used=7 fp=0xffff8800693bd728 flags=0x100000000004080
66 INFO: Object 0xffff8800693bc558 @offset=1368 fp=0xffff8800693bc720
67
68 Bytes b4 ffff8800693bc548: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
69 Object ffff8800693bc558: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
70 Object ffff8800693bc568: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
71 Object ffff8800693bc578: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
72 Object ffff8800693bc588: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
73 Object ffff8800693bc598: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
74 Object ffff8800693bc5a8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
75 Object ffff8800693bc5b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
76 Object ffff8800693bc5c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk.
77 Redzone ffff8800693bc5d8: cc cc cc cc cc cc cc cc ........
78 Padding ffff8800693bc718: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
79 CPU: 0 PID: 1689 Comm: modprobe Tainted: G B 3.18.0-rc1-mm1+ #98
80 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
81 ffff8800693bc000 0000000000000000 ffff8800693bc558 ffff88006923bb78
82 ffffffff81cc68ae 00000000000000f3 ffff88006d407600 ffff88006923bba8
83 ffffffff811fd848 ffff88006d407600 ffffea0001a4ef00 ffff8800693bc558
84 Call Trace: 66 Call Trace:
85 [<ffffffff81cc68ae>] dump_stack+0x46/0x58 67 dump_stack+0x94/0xd8
86 [<ffffffff811fd848>] print_trailer+0xf8/0x160 68 print_address_description+0x73/0x280
87 [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] 69 kasan_report+0x144/0x187
88 [<ffffffff811ff0f5>] object_err+0x35/0x40 70 __asan_report_store1_noabort+0x17/0x20
89 [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] 71 kmalloc_oob_right+0xa8/0xbc [test_kasan]
90 [<ffffffff8120b9fa>] kasan_report_error+0x38a/0x3f0 72 kmalloc_tests_init+0x16/0x700 [test_kasan]
91 [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 73 do_one_initcall+0xa5/0x3ae
92 [<ffffffff8120b344>] ? kasan_unpoison_shadow+0x14/0x40 74 do_init_module+0x1b6/0x547
93 [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40 75 load_module+0x75df/0x8070
94 [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan] 76 __do_sys_init_module+0x1c6/0x200
95 [<ffffffff8120a995>] __asan_store1+0x75/0xb0 77 __x64_sys_init_module+0x6e/0xb0
96 [<ffffffffa0002601>] ? kmem_cache_oob+0x1d/0xc3 [test_kasan] 78 do_syscall_64+0x9f/0x2c0
97 [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan] 79 entry_SYSCALL_64_after_hwframe+0x44/0xa9
98 [<ffffffffa0002065>] kmalloc_oob_right+0x65/0x75 [test_kasan] 80 RIP: 0033:0x7f96443109da
99 [<ffffffffa00026b0>] init_module+0x9/0x47 [test_kasan] 81 RSP: 002b:00007ffcf0b51b08 EFLAGS: 00000202 ORIG_RAX: 00000000000000af
100 [<ffffffff810002d9>] do_one_initcall+0x99/0x200 82 RAX: ffffffffffffffda RBX: 000055dc3ee521a0 RCX: 00007f96443109da
101 [<ffffffff811e4e5c>] ? __vunmap+0xec/0x160 83 RDX: 00007f96445cff88 RSI: 0000000000057a50 RDI: 00007f9644992000
102 [<ffffffff81114f63>] load_module+0x2cb3/0x3b20 84 RBP: 000055dc3ee510b0 R08: 0000000000000003 R09: 0000000000000000
103 [<ffffffff8110fd70>] ? m_show+0x240/0x240 85 R10: 00007f964430cd0a R11: 0000000000000202 R12: 00007f96445cff88
104 [<ffffffff81115f06>] SyS_finit_module+0x76/0x80 86 R13: 000055dc3ee51090 R14: 0000000000000000 R15: 0000000000000000
105 [<ffffffff81cd3129>] system_call_fastpath+0x12/0x17 87
88 Allocated by task 2760:
89 save_stack+0x43/0xd0
90 kasan_kmalloc+0xa7/0xd0
91 kmem_cache_alloc_trace+0xe1/0x1b0
92 kmalloc_oob_right+0x56/0xbc [test_kasan]
93 kmalloc_tests_init+0x16/0x700 [test_kasan]
94 do_one_initcall+0xa5/0x3ae
95 do_init_module+0x1b6/0x547
96 load_module+0x75df/0x8070
97 __do_sys_init_module+0x1c6/0x200
98 __x64_sys_init_module+0x6e/0xb0
99 do_syscall_64+0x9f/0x2c0
100 entry_SYSCALL_64_after_hwframe+0x44/0xa9
101
102 Freed by task 815:
103 save_stack+0x43/0xd0
104 __kasan_slab_free+0x135/0x190
105 kasan_slab_free+0xe/0x10
106 kfree+0x93/0x1a0
107 umh_complete+0x6a/0xa0
108 call_usermodehelper_exec_async+0x4c3/0x640
109 ret_from_fork+0x35/0x40
110
111 The buggy address belongs to the object at ffff8801f44ec300
112 which belongs to the cache kmalloc-128 of size 128
113 The buggy address is located 123 bytes inside of
114 128-byte region [ffff8801f44ec300, ffff8801f44ec380)
115 The buggy address belongs to the page:
116 page:ffffea0007d13b00 count:1 mapcount:0 mapping:ffff8801f7001640 index:0x0
117 flags: 0x200000000000100(slab)
118 raw: 0200000000000100 ffffea0007d11dc0 0000001a0000001a ffff8801f7001640
119 raw: 0000000000000000 0000000080150015 00000001ffffffff 0000000000000000
120 page dumped because: kasan: bad access detected
121
106 Memory state around the buggy address: 122 Memory state around the buggy address:
107 ffff8800693bc300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 123 ffff8801f44ec200: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
108 ffff8800693bc380: fc fc 00 00 00 00 00 00 00 00 00 00 00 00 00 fc 124 ffff8801f44ec280: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
109 ffff8800693bc400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 125 >ffff8801f44ec300: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 03
110 ffff8800693bc480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc 126 ^
111 ffff8800693bc500: fc fc fc fc fc fc fc fc fc fc fc 00 00 00 00 00 127 ffff8801f44ec380: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb
112 >ffff8800693bc580: 00 00 00 00 00 00 00 00 00 00 03 fc fc fc fc fc 128 ffff8801f44ec400: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
113 ^
114 ffff8800693bc600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
115 ffff8800693bc680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
116 ffff8800693bc700: fc fc fc fc fb fb fb fb fb fb fb fb fb fb fb fb
117 ffff8800693bc780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
118 ffff8800693bc800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
119 ================================================================== 129 ==================================================================
120 130
121The header of the report discribe what kind of bug happened and what kind of 131The header of the report provides a short summary of what kind of bug happened
122access caused it. It's followed by the description of the accessed slub object 132and what kind of access caused it. It's followed by a stack trace of the bad
123(see 'SLUB Debug output' section in Documentation/vm/slub.rst for details) and 133access, a stack trace of where the accessed memory was allocated (in case bad
124the description of the accessed memory page. 134access happens on a slab object), and a stack trace of where the object was
135freed (in case of a use-after-free bug report). Next comes a description of
136the accessed slab object and information about the accessed memory page.
125 137
126In the last section the report shows memory state around the accessed address. 138In the last section the report shows memory state around the accessed address.
127Reading this part requires some understanding of how KASAN works. 139Reading this part requires some understanding of how KASAN works.
@@ -138,18 +150,24 @@ inaccessible memory like redzones or freed memory (see mm/kasan/kasan.h).
138In the report above the arrows point to the shadow byte 03, which means that 150In the report above the arrows point to the shadow byte 03, which means that
139the accessed address is partially accessible. 151the accessed address is partially accessible.
140 152
153For tag-based KASAN this last report section shows the memory tags around the
154accessed address (see Implementation details section).
155
141 156
142Implementation details 157Implementation details
143---------------------- 158----------------------
144 159
160Generic KASAN
161~~~~~~~~~~~~~
162
145From a high level, our approach to memory error detection is similar to that 163From a high level, our approach to memory error detection is similar to that
146of kmemcheck: use shadow memory to record whether each byte of memory is safe 164of kmemcheck: use shadow memory to record whether each byte of memory is safe
147to access, and use compile-time instrumentation to check shadow memory on each 165to access, and use compile-time instrumentation to insert checks of shadow
148memory access. 166memory on each memory access.
149 167
150AddressSanitizer dedicates 1/8 of kernel memory to its shadow memory 168Generic KASAN dedicates 1/8th of kernel memory to its shadow memory (e.g. 16TB
151(e.g. 16TB to cover 128TB on x86_64) and uses direct mapping with a scale and 169to cover 128TB on x86_64) and uses direct mapping with a scale and offset to
152offset to translate a memory address to its corresponding shadow address. 170translate a memory address to its corresponding shadow address.
153 171
154Here is the function which translates an address to its corresponding shadow 172Here is the function which translates an address to its corresponding shadow
155address:: 173address::
@@ -162,12 +180,38 @@ address::
162 180
163where ``KASAN_SHADOW_SCALE_SHIFT = 3``. 181where ``KASAN_SHADOW_SCALE_SHIFT = 3``.
164 182
165Compile-time instrumentation used for checking memory accesses. Compiler inserts 183Compile-time instrumentation is used to insert memory access checks. Compiler
166function calls (__asan_load*(addr), __asan_store*(addr)) before each memory 184inserts function calls (__asan_load*(addr), __asan_store*(addr)) before each
167access of size 1, 2, 4, 8 or 16. These functions check whether memory access is 185memory access of size 1, 2, 4, 8 or 16. These functions check whether memory
168valid or not by checking corresponding shadow memory. 186access is valid or not by checking corresponding shadow memory.
169 187
170GCC 5.0 has possibility to perform inline instrumentation. Instead of making 188GCC 5.0 has possibility to perform inline instrumentation. Instead of making
171function calls GCC directly inserts the code to check the shadow memory. 189function calls GCC directly inserts the code to check the shadow memory.
172This option significantly enlarges kernel but it gives x1.1-x2 performance 190This option significantly enlarges kernel but it gives x1.1-x2 performance
173boost over outline instrumented kernel. 191boost over outline instrumented kernel.
192
193Software tag-based KASAN
194~~~~~~~~~~~~~~~~~~~~~~~~
195
196Tag-based KASAN uses the Top Byte Ignore (TBI) feature of modern arm64 CPUs to
197store a pointer tag in the top byte of kernel pointers. Like generic KASAN it
198uses shadow memory to store memory tags associated with each 16-byte memory
199cell (therefore it dedicates 1/16th of the kernel memory for shadow memory).
200
201On each memory allocation tag-based KASAN generates a random tag, tags the
202allocated memory with this tag, and embeds this tag into the returned pointer.
203Software tag-based KASAN uses compile-time instrumentation to insert checks
204before each memory access. These checks make sure that tag of the memory that
205is being accessed is equal to tag of the pointer that is used to access this
206memory. In case of a tag mismatch tag-based KASAN prints a bug report.
207
208Software tag-based KASAN also has two instrumentation modes (outline, that
209emits callbacks to check memory accesses; and inline, that performs the shadow
210memory checks inline). With outline instrumentation mode, a bug report is
211simply printed from the function that performs the access check. With inline
212instrumentation a brk instruction is emitted by the compiler, and a dedicated
213brk handler is used to print bug reports.
214
215A potential expansion of this mode is a hardware tag-based mode, which would
216use hardware memory tagging support instead of compiler instrumentation and
217manual shadow memory manipulation.