1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/* based_mt_task.c -- A basic multi-threaded real-time task skeleton.
*
* This (by itself useless) task demos how to setup a multi-threaded LITMUS^RT
* real-time task. Familiarity with the single threaded example (base_task.c)
* is assumed.
*
* Currently, liblitmus still lacks automated support for real-time
* tasks, but internaly it is thread-safe, and thus can be used together
* with pthreads.
*/
#include <stdio.h>
#include <stdlib.h>
/* Include gettid() */
#include <sys/types.h>
/* Include threading support. */
#include <pthread.h>
/* Include the LITMUS^RT API.*/
#include "litmus.h"
#define PERIOD 100
#define EXEC_COST 10
/* Let's create 10 threads in the example,
* for a total utilization of 1.
*/
#define NUM_THREADS 10
/* The information passed to each thread. Could be anything. */
struct thread_context {
int id;
};
/* The real-time thread program. Doesn't have to be the same for
* all threads. Here, we only have one that will invoke job().
*/
void* rt_thread(void *tcontext);
/* Declare the periodically invoked job.
* Returns 1 -> task should exit.
* 0 -> task should continue.
*/
int job(void);
/* Catch errors.
*/
#define CALL( exp ) do { \
int ret; \
ret = exp; \
if (ret != 0) \
fprintf(stderr, "%s failed: %m\n", #exp);\
else \
fprintf(stderr, "%s ok.\n", #exp); \
} while (0)
/* Basic setup is the same as in the single-threaded example. However,
* we do some thread initiliazation first before invoking the job.
*/
int main(int argc, char** argv)
{
int i;
struct thread_context ctx[NUM_THREADS];
pthread_t task[NUM_THREADS];
/* The task is in background mode upon startup. */
/*****
* 1) Command line paramter parsing would be done here.
*/
/*****
* 2) Work environment (e.g., global data structures, file data, etc.) would
* be setup here.
*/
/*****
* 3) Initialize LITMUS^RT.
* Task parameters will be specified per thread.
*/
init_litmus();
/*****
* 4) Launch threads.
*/
for (i = 0; i < NUM_THREADS; i++) {
ctx[i].id = i;
pthread_create(task + i, NULL, rt_thread, (void *) (ctx + i));
}
/*****
* 5) Wait for RT threads to terminate.
*/
for (i = 0; i < NUM_THREADS; i++)
pthread_join(task[i], NULL);
/*****
* 6) Clean up, maybe print results and stats, and exit.
*/
return 0;
}
/* A real-time thread is very similar to the main function of a single-threaded
* real-time app. Notice, that init_rt_thread() is called to initialized per-thread
* data structures of the LITMUS^RT user space libary.
*/
void* rt_thread(void *tcontext)
{
int do_exit;
struct thread_context *ctx = (struct thread_context *) tcontext;
/* Make presence visible. */
printf("RT Thread %d active.\n", ctx->id);
/*****
* 1) Initialize real-time settings.
*/
CALL( init_rt_thread() );
CALL( sporadic_global(EXEC_COST, PERIOD) );
/*****
* 2) Transition to real-time mode.
*/
CALL( task_mode(LITMUS_RT_TASK) );
/* The task is now executing as a real-time task if the call didn't fail.
*/
/*****
* 3) Invoke real-time jobs.
*/
do {
/* Wait until the next job is released. */
sleep_next_period();
/* Invoke job. */
do_exit = job();
} while (!do_exit);
/*****
* 4) Transition to background mode.
*/
CALL( task_mode(BACKGROUND_TASK) );
return NULL;
}
int job(void)
{
/* Do real-time calculation. */
/* Don't exit. */
return 0;
}
|